ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Overcoming bandwidth limitations in space-coiled acoustic metamaterials through inclined perforated plate design |
Jixin Liu(刘继鑫)1, Fengmin Wu(吴丰民)1,3†, Ting Li(李婷)1, Junjun Wang(王军军)1, Xinye Zou(邹欣晔)2‡, and Dong Zhang(章东)1,2,3§ |
1 Department of Applied Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China; 2 Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; 3 Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction. However, they have limitations in terms of low-frequency absorption bandwidth, and the weak coupling effect under complex coiled structures also limits their applications. In this work, we introduce the composite structure changing the characteristic impedance of acoustic metamaterials to enhance the coupling effect. Meanwhile, the perforated plates with inclined design instead of traditional partitions greatly improve the sound absorption. The model and method designed in this paper show significant innovation in enhancing low-frequency absorption performance.
|
Received: 03 October 2024
Revised: 04 November 2024
Accepted manuscript online: 07 November 2024
|
PACS:
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
43.40.+s
|
(Structural acoustics and vibration)
|
|
43.50.+y
|
(Noise: its effects and control)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3204303), the National Natural Science Foundation of China (Grant No. 11934009), the Fundamental Research Funds for the Central Universities (Grant No. 020414380195), and the Foundation of State Key Laboratory of Ultrasound in Medicine and Engineering (Grant No. 2022KFKT021). |
Corresponding Authors:
Fengmin Wu, Xinye Zou, Dong Zhang
E-mail: fmwu@hrbust.edu.cn;xyzou@nju.edu.cn;dzhang@nju.edu.cn
|
About author: 2025-014303-241437.pdf |
Cite this article:
Jixin Liu(刘继鑫), Fengmin Wu(吴丰民), Ting Li(李婷), Junjun Wang(王军军), Xinye Zou(邹欣晔), and Dong Zhang(章东) Overcoming bandwidth limitations in space-coiled acoustic metamaterials through inclined perforated plate design 2025 Chin. Phys. B 34 014303
|
[1] Li J, Wen X and Sheng P 2021 J. Appl. Phys. 129 171103 [2] Qu S and Shen P 2022 Phys. Rev. Appl. 17 047001 [3] Guo J, Fang Y, Qu R and Zhang X 2023 Mater. Today 66 321 [4] Zhang J, Hu B and Wang S 2023 Appl. Phys. Lett. 123 010502 [5] Wang B and Huang J P 2022 Chin. Phys. B 31 098101 [6] Liang S Q, Liu J H, Lai Y and Liu X Z 2023 Chin. Phys. B 32 044301 [7] Yang Y, Ma D K and Zhang L F 2023 Chin. Phys. Lett. 40 124401 [8] Song G Y, Cheng Q, Cui T J and Jing Y 2018 Phys. Rev. Mater. 2 065201 [9] He H, Qiu C, Ye L, Cai X, Fan X, Ke M, Zhang F and Liu Z 2018 Nature 560 61 [10] Lin Z, Zhang Y, Wang K W and Tol S 2022 Appl. Phys. Lett. 121 201703 [11] Hu C, Xue S, Yin Y, Hao Z, Zhou Y and Chen H 2022 Appl. Phys. Lett. 120 192202 [12] Shen L, Zhu Y F, Mao F L, Gao S Y, Su Z H, Luo Z T, Zhang H and Assouar B 2021 Phys. Rev. Appl. 16 064057 [13] Li Y, Lin Y and Peng Y 2022 J. Appl. Phys. 132 115104 [14] Xie S H, et al. 2020 Chin. Phys. Lett. 37 054301 [15] Zhu Y, Long H, Liu C, Zhang H, Cheng Y and Liu X 2022 Appl. Phys. Lett. 120 141701 [16] Liu L, Xie L X, Huang W, Zhang X J, Lu M H and Chen Y F 2022 Appl. Phys. Lett. 120 251701 [17] Liu C, Wang H, Liang B, Cheng J C and Lai Y 2022 Appl. Phys. Lett. 120 231702 [18] Du J, Luo Y, Zhao X, Sun X, Song Y and Hu X 2021 Sci. Rep. 11 5829 [19] Xie Y, Wang W, Chen H, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553 [20] Liu C, Shi J, Zhao W, Zhou X, Ma C, Peng R, Wang M, Hang Z H, Liu X, Christensen J, Fang N X and Lai Y 2021 Phys. Rev. Lett. 127 084301 [21] Liang Z and Li J 2012 Phys. Rev. Lett. 108 114301 [22] Zhang C and Hu X 2016 Phys. Rev. Appl. 6 064205 [23] Liu Y, Zeng X, Ren S, Sun W, Zeng Y, Wang H and Lei Y 2023 J. Appl. Phys. 134 085104 [24] Abrahams M P, Oudich M, Revalor Y, Vukadinovic N and Assouar B 2024 Appl. Phys. Lett. 124 151702 [25] Ryoo H and Jeon W 2018 Appl. Phys. Lett. 113 121903 [26] Li Y and Assouar B M 2016 Appl. Phys. Lett. 108 063502 [27] Huang S, Fang X, Wang X, Assouar B, Cheng Q and Li Y 2018 Appl. Phys. Lett. 113 233501 [28] Shen Y, Yang Y, Guo X, Shen Y and Zhang D 2019 Appl. Phys. Lett. 114 083501 [29] Pavan G and Singh S 2024 J. Acoust. Soc. Am. 155 496 [30] Xu Q, Qiao J, Zhang G and Li L 2023 J. Appl. Phys. 133 075106 [31] Gunay M, Biçer A, Korozlu N and Cicek A 2023 Appl. Phys. Lett. 123 092201 [32] Carbajo J, Ghaffari Mosanenzadeh S, Kim S and Fang N X 2020 Appl. Acoust. 169 107496 [33] Jiang C S, Li X H, Cheng W Y, Luo Y and Xing T 2020 Appl. Acoust. 157 106998 [34] Liu Y, Ren S, Sun W, Lei Y, Wang H and Zeng X 2021 Appl. Phys. Lett. 119 101901 [35] Shao C, Zhu Y, Long H, Liu C, Cheng Y and Liu X 2022 Appl. Phys. Lett. 120 083504 [36] Carbajo J, Ghaffari Mosanenzadeh S, Kim S and Fang N X 2020 Appl. Phys. Lett. 116 054101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|