Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014303    DOI: 10.1088/1674-1056/ad8fa2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Overcoming bandwidth limitations in space-coiled acoustic metamaterials through inclined perforated plate design

Jixin Liu(刘继鑫)1, Fengmin Wu(吴丰民)1,3†, Ting Li(李婷)1, Junjun Wang(王军军)1, Xinye Zou(邹欣晔)2‡, and Dong Zhang(章东)1,2,3§
1 Department of Applied Physics, School of Science, Harbin University of Science and Technology, Harbin 150080, China;
2 Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China;
3 Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction. However, they have limitations in terms of low-frequency absorption bandwidth, and the weak coupling effect under complex coiled structures also limits their applications. In this work, we introduce the composite structure changing the characteristic impedance of acoustic metamaterials to enhance the coupling effect. Meanwhile, the perforated plates with inclined design instead of traditional partitions greatly improve the sound absorption. The model and method designed in this paper show significant innovation in enhancing low-frequency absorption performance.
Keywords:  metamaterials      composite structure      over-damped modes coupling      sound absorption  
Received:  03 October 2024      Revised:  04 November 2024      Accepted manuscript online:  07 November 2024
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.40.+s (Structural acoustics and vibration)  
  43.50.+y (Noise: its effects and control)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3204303), the National Natural Science Foundation of China (Grant No. 11934009), the Fundamental Research Funds for the Central Universities (Grant No. 020414380195), and the Foundation of State Key Laboratory of Ultrasound in Medicine and Engineering (Grant No. 2022KFKT021).
Corresponding Authors:  Fengmin Wu, Xinye Zou, Dong Zhang     E-mail:  fmwu@hrbust.edu.cn;xyzou@nju.edu.cn;dzhang@nju.edu.cn
About author:  2025-014303-241437.pdf

Cite this article: 

Jixin Liu(刘继鑫), Fengmin Wu(吴丰民), Ting Li(李婷), Junjun Wang(王军军), Xinye Zou(邹欣晔), and Dong Zhang(章东) Overcoming bandwidth limitations in space-coiled acoustic metamaterials through inclined perforated plate design 2025 Chin. Phys. B 34 014303

[1] Li J, Wen X and Sheng P 2021 J. Appl. Phys. 129 171103
[2] Qu S and Shen P 2022 Phys. Rev. Appl. 17 047001
[3] Guo J, Fang Y, Qu R and Zhang X 2023 Mater. Today 66 321
[4] Zhang J, Hu B and Wang S 2023 Appl. Phys. Lett. 123 010502
[5] Wang B and Huang J P 2022 Chin. Phys. B 31 098101
[6] Liang S Q, Liu J H, Lai Y and Liu X Z 2023 Chin. Phys. B 32 044301
[7] Yang Y, Ma D K and Zhang L F 2023 Chin. Phys. Lett. 40 124401
[8] Song G Y, Cheng Q, Cui T J and Jing Y 2018 Phys. Rev. Mater. 2 065201
[9] He H, Qiu C, Ye L, Cai X, Fan X, Ke M, Zhang F and Liu Z 2018 Nature 560 61
[10] Lin Z, Zhang Y, Wang K W and Tol S 2022 Appl. Phys. Lett. 121 201703
[11] Hu C, Xue S, Yin Y, Hao Z, Zhou Y and Chen H 2022 Appl. Phys. Lett. 120 192202
[12] Shen L, Zhu Y F, Mao F L, Gao S Y, Su Z H, Luo Z T, Zhang H and Assouar B 2021 Phys. Rev. Appl. 16 064057
[13] Li Y, Lin Y and Peng Y 2022 J. Appl. Phys. 132 115104
[14] Xie S H, et al. 2020 Chin. Phys. Lett. 37 054301
[15] Zhu Y, Long H, Liu C, Zhang H, Cheng Y and Liu X 2022 Appl. Phys. Lett. 120 141701
[16] Liu L, Xie L X, Huang W, Zhang X J, Lu M H and Chen Y F 2022 Appl. Phys. Lett. 120 251701
[17] Liu C, Wang H, Liang B, Cheng J C and Lai Y 2022 Appl. Phys. Lett. 120 231702
[18] Du J, Luo Y, Zhao X, Sun X, Song Y and Hu X 2021 Sci. Rep. 11 5829
[19] Xie Y, Wang W, Chen H, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553
[20] Liu C, Shi J, Zhao W, Zhou X, Ma C, Peng R, Wang M, Hang Z H, Liu X, Christensen J, Fang N X and Lai Y 2021 Phys. Rev. Lett. 127 084301
[21] Liang Z and Li J 2012 Phys. Rev. Lett. 108 114301
[22] Zhang C and Hu X 2016 Phys. Rev. Appl. 6 064205
[23] Liu Y, Zeng X, Ren S, Sun W, Zeng Y, Wang H and Lei Y 2023 J. Appl. Phys. 134 085104
[24] Abrahams M P, Oudich M, Revalor Y, Vukadinovic N and Assouar B 2024 Appl. Phys. Lett. 124 151702
[25] Ryoo H and Jeon W 2018 Appl. Phys. Lett. 113 121903
[26] Li Y and Assouar B M 2016 Appl. Phys. Lett. 108 063502
[27] Huang S, Fang X, Wang X, Assouar B, Cheng Q and Li Y 2018 Appl. Phys. Lett. 113 233501
[28] Shen Y, Yang Y, Guo X, Shen Y and Zhang D 2019 Appl. Phys. Lett. 114 083501
[29] Pavan G and Singh S 2024 J. Acoust. Soc. Am. 155 496
[30] Xu Q, Qiao J, Zhang G and Li L 2023 J. Appl. Phys. 133 075106
[31] Gunay M, Biçer A, Korozlu N and Cicek A 2023 Appl. Phys. Lett. 123 092201
[32] Carbajo J, Ghaffari Mosanenzadeh S, Kim S and Fang N X 2020 Appl. Acoust. 169 107496
[33] Jiang C S, Li X H, Cheng W Y, Luo Y and Xing T 2020 Appl. Acoust. 157 106998
[34] Liu Y, Ren S, Sun W, Lei Y, Wang H and Zeng X 2021 Appl. Phys. Lett. 119 101901
[35] Shao C, Zhu Y, Long H, Liu C, Cheng Y and Liu X 2022 Appl. Phys. Lett. 120 083504
[36] Carbajo J, Ghaffari Mosanenzadeh S, Kim S and Fang N X 2020 Appl. Phys. Lett. 116 054101
[1] General three-dimensional thermal illusion metamaterials
Tianfeng Liu(刘天丰), Zhaochen Wang(王兆宸), Zhan Zhu(朱展), and Run Hu(胡润). Chin. Phys. B, 2024, 33(4): 044401.
[2] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[3] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[4] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[5] Energy-distributable waterborne acoustic launcher for directional sensing
Tian Yang(杨天), Wenting Gao(高文婷), Shida Fan(范世达), Jie Ren(任捷), and Tianzhi Yang(杨天智). Chin. Phys. B, 2023, 32(12): 124302.
[6] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[7] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[12] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[13] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[14] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[15] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
No Suggested Reading articles found!