Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068501    DOI: 10.1088/1674-1056/adc40b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A high-sensitivity deep-junction single-photon detector for near-infrared imaging

Yuanhao Bi(毕元昊)1, Dajing Bian(卞大井)1, Ming Li(李铭)1, and Yue Xu(徐跃)1,2,†
1 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 National and Local Joint Engineering Laboratory of RF Integration & Micro-Assembly Technology, Nanjing 210023, China
Abstract  A near-infrared (NIR) enhanced silicon single-photon avalanche diode (SPAD) detector is proposed using 0.18 μm bipolar-CMOS-DMOS technology. It is based on a deep multiplication region, formed by a junction between the high-voltage P-well (HVPW) and high-voltage buried N+ layer, to enhance the NIR photon detection probability (PDP). Thanks to the lightly doped P-type epitaxial layer, the electric field in the guard ring is reduced and premature breakdown is prevented. In particular, an extra P-type implantation layer (PIL) is added to the HVPW to reduce the breakdown voltage and enhance the device's sensitivity. Further research on the impact of different PIL sizes on the device performance is carried out. It is experimentally shown that at an excess bias voltage of 5 V, the optimized SPAD achieves a dark count rate of 0.64 cps/μm2, peak PDP of 54.8% at 555 nm and PDP of 10.53% at 905 nm. The full width at half-maximum of the timing jitter is 285 ps, and the afterpulsing probability is lower than 1.17%. This novel device provides a practical, low-cost solution for high-performance NIR time-of-flight detectors and 3D imaging sensors.
Keywords:  single-photon avalanche diode (SPAD)      near-infrared (NIR) enhancement      photon detection probability (PDP)      dark count rate (DCR)      time-of-flight (ToF)  
Received:  25 February 2025      Revised:  10 March 2025      Accepted manuscript online:  24 March 2025
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.79.Pw (Imaging detectors and sensors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62171233), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20241891), and the Jiangsu Province Postgraduate Innovation Program (Grant No. KYCX23_0999).
Corresponding Authors:  Yue Xu     E-mail:  yuex@njupt.edu.cn

Cite this article: 

Yuanhao Bi(毕元昊), Dajing Bian(卞大井), Ming Li(李铭), and Yue Xu(徐跃) A high-sensitivity deep-junction single-photon detector for near-infrared imaging 2025 Chin. Phys. B 34 068501

[1] Lu X, Law M K, Jiang Y, Zhao X, Mak P I and Martins R P 2020 IEEE Trans. Electron Devices 67 2223
[2] Du B C, Li Z H, Shen G Y, Zheng T X, Zhang H Y, et al. 2019 Chin. Phys. Lett. 36 094201
[3] Liu F, Bruschini C, Toh E H, Zheng P, Sun Y S, et al. 2024 IEEE J. Sel. Topics Quantum Electron 30 1
[4] Li S Y, Xu Y, Bian D J and Liu D L 2024 IEEE Transactions on Electron Devices 71 6138
[5] Gramuglia F,WuML, Bruschini C, LeeMJ and Charbon E 2022 IEEE J. Sel. Topics Quantum Electron. 28 1
[6] Bian D J, Liu D L, Dong J, Yuan F and Xu Y 2024 IEEE Electron Device Lett. 45 436
[7] Veerappan C and Charbon E 2014 IEEE J. Sel. Topics Quantum Electron. 20 299
[8] Pozar B, Berdalović I, Knezević T and Suligoj T 2024 IEEE Photon. Technol. Lett. 36 1241
[9] Park E, Ha W Y, Park H S, Eom D, Choi H S, et al. 2024 IEEE J. Sel. Topics Quantum Electron. 30 1
[10] Wojtkiewicz M, Rae B and Henderson R K 2024 IEEE Trans. Electron Devices 71 3470
[11] Jiang W, Scott R and Deen M J 2022 IEEE Photon. J. 14 1
[12] Van Sieleghem E, Suss A, Boulenc P, Lee J, Karve G, De Munck K, Cavaco C and Van Hoof C 2021 IEEE Electron Device Lett. 42 879
[13] Zhou L, Bian D J, Liu D L and Xu Y 2024 IEEE Photon. Technol. Lett. 36 83
[14] Zhou X Y, Lv Y J, Guo H Y, Gu G D, Wang Y G, et al. 2023 Chin. Phys. B 32 038502
[15] Veerappan C and Charbon E 2016 IEEE Trans. Electron Devices 63 65
[16] Liu Y, Liu M L, Ma R, Hu J, Li D and Wang X Y 2022 IEEE Trans. Electron Devices 69 5041
[17] Ma X K, Huang Y Q, Yang Y W, et al. 2019 Opt. Quantum Electron 51 44
[18] Gramuglia F, Keshavarzian P, Kizilkan E, et al. 2022 IEEE J. Sel. Top. Quantum Electron. 28 1
[19] Zeng M L, Wang Y, Jin X L, et al. 2021 J. Nanoelectron. Optoelectron 16 546
[20] Chen H, Chen X, Lu J, et al. 2020 IEEE Photon. J. 12 1
[21] Lim K T, Kim H, Hwang J, Kim J, Sul W S and Cho G 2019 Nucl. Instrum. Methods Phys. Res. A 914 25
[22] Zeng M L, Wang Y, Jin X L, Peng Y and Luo J 2023 Chin. Phys. B 32 078502
[1] Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Chao Ma(马超), Zhiliang Hu(胡志良), Weitao Yang(杨卫涛), and Bo Zheng(郑波). Chin. Phys. B, 2025, 34(1): 018501.
[2] Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Xu Xiong(熊旭), Chao Ma(马超), Weitao Yang(杨卫涛), Bo Zheng(郑波), and Chao Zhou(周超). Chin. Phys. B, 2024, 33(7): 078501.
[3] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[4] Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
Zhaoyao Pan(潘赵耀), Jinpeng Yang(杨金彭), and Xiaoshuang Shen(沈小双). Chin. Phys. B, 2024, 33(3): 038501.
[5] Improving dynamic characteristics for IGBTs by using interleaved trench gate
Yi-Fan Wu(吴毅帆), Gao-Qiang Deng(邓高强), Chen Tan(谭琛), Shi-Wei Liang(梁世维), and Jun Wang(王俊). Chin. Phys. B, 2023, 32(12): 128503.
[6] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
Wei-Tai Gong(巩伟泰), Yan Li(李闫), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), and Xiao-Jin Li(李小进). Chin. Phys. B, 2023, 32(12): 128502.
[7] SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
Jin-Ping Zhang(张金平), Wei Chen(陈伟), Zi-Xun Chen(陈子珣), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(11): 118502.
[8] Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer
Xuerui Niu(牛雪锐), Bin Hou(侯斌), Meng Zhang(张濛), Ling Yang(杨凌), Mei Wu(武玫), Xinchuang Zhang(张新创), Fuchun Jia(贾富春), Chong Wang(王冲), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(10): 108101.
[9] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[10] An accurate analytical surface potential model of heterojunction tunnel FET
Yunhe Guan(关云鹤), Huan Li(黎欢), Haifeng Chen(陈海峰), and Siwei Huang(黄思伟). Chin. Phys. B, 2023, 32(10): 108506.
[11] Model and data of optically controlled tunable capacitor in silicon single-photon avalanche diode
Mei-Ling Zeng(曾美玲), Yang Wang(汪洋), Xiang-Liang Jin(金湘亮), Yan Peng(彭艳), and Jun Luo(罗均). Chin. Phys. B, 2023, 32(7): 078502.
[12] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[13] An integrated split and dummy gates MOSFET with fast turn-off and reverse recovery characteristics
Weizhong Chen(陈伟中), Liuting Mou(牟柳亭), Haifeng Qin(秦海峰), Hongsheng Zhang(张红升), and Zhengsheng Han(韩郑生). Chin. Phys. B, 2023, 32(6): 067303.
[14] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[15] Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(5): 058501.
No Suggested Reading articles found!