Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 094302    DOI: 10.1088/1674-1056/ad5d66
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field

Rui-Qi Pan(潘瑞琪), Zhi-Wei Du(杜芷玮), Cheng-Hui Wang(王成会)†, Jing Hu(胡静)‡, and Run-Yang Mo(莫润阳)
Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
Abstract  A model with three-layer structure is introduced to explore the acoustic radiation force (ARF) on composite particles with an elastic thin shell. Combing acoustic scattering of cylinder and the thin-shell theorem, the ARF expression was derived, and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained. It was found that many factors, such as medium properties, acoustic parameters, eccentricity, and radius ratio of the inner liquid column, affect the acoustic scattering field of the particle, which in turn changes the forces and torque. The acoustic response varies with the particle structures, so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle. The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column. The decrease of the inner liquid density may suppress the high-order resonance peaks, and internal fluid column has less effects on the change in force on composite particle at $ka>3$, while limited differences exist at $ka<3$. The axial torque on particles due to geometric asymmetry is closely related to $ka$ and the eccentricity. The distribution of positive and negative force and torque along the axis $ka$ exhibits that composite particle can be manipulated or separated by ultrasound. Our theoretical analysis can provide support for the acoustic manipulation, sorting, and targeting of inhomogeneous particles.
Keywords:  acoustic radiation force      acoustic scattering of cylinders      elastic shell      composite particles  
Received:  12 April 2024      Revised:  14 June 2024      Accepted manuscript online:  01 July 2024
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374441 and 11974232) and the Fund from Yulin Science and Technology Bureau (Grant No. CXY-2022-178).
Corresponding Authors:  Cheng-Hui Wang, Jing Hu     E-mail:  wangld001@snnu.edu.cn;hjwlx@snnu.edu.cn

Cite this article: 

Rui-Qi Pan(潘瑞琪), Zhi-Wei Du(杜芷玮), Cheng-Hui Wang(王成会), Jing Hu(胡静), and Run-Yang Mo(莫润阳) Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field 2024 Chin. Phys. B 33 094302

[1] Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X, Townsend P A and Hill M 2011 Biomicrofluidics 5 044108
[2] Mittelstein D R, Ye J, Schibber E F, Roychoudhury A, Martinez L T, Fekrazad M H, Ortiz M, Lee P P, Shapiro M G and Gharib M 2020 Appl. Phys. Lett. 116 013701
[3] Alan B, Utangaç M, Göya C and Daǧgülli M 2016 Med. Sci. Monit. 22 4523
[4] Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P H, Truica C I, Drabick J J, El-Deiry W S, Suresh S and Huang T J 2015 Proc. Natl. Acad. Sci. USA 112 4970
[5] Kopechek J A, McTiernan C F, Chen X, Zhu J, Mburu M, Feroze R, Whitehurst D A, Lavery L, Cyriac J and Villanueva F S 2019 Theranostics 9 7088
[6] Lum A F H, Borden M A, Dayton P A, Kruse D E, Simon S I and Ferrara K W 2006 Journal of Controlled Release 111 128
[7] Sánchez M, Anitua E, Delgado D, Prado R, Sánchez P, Fiz N, Guadilla J, Azofra J, Pompei O, Orive G, Ortega M, Yoshioka T and Padilla S 2015 J. Tissue. Eng. Regener. Med. 11 1619
[8] Rapoport N, Kennedy A M, Shea J E, Scaife C L and Nam K H 2010 Mol. Pharm. 7 22
[9] Meng L, Cai F, Li F, Zhou W, Niu L and Zheng H 2019 J. Phys. D: Appl. Phys. 52 273001
[10] Zhang R, Guo H, Deng W, Huang X, Li F, Lu J and Liu Z 2020 Appl. Phys. Lett. 116 123503
[11] Sriphutkiat Y, Kasetsirikul S, Ketpun D and Zhou Y 2019 Sci. Rep. 9 17774
[12] Yamaguchi J, Hasegawa H and Kanai H 2012 J. Med. Ultrasonics 39 279
[13] Wu J, Du G, Work S S and Warshaw D M 1990 J. Acoust. Soc. Am. 87 581
[14] Hasegawa T, Saka K, Inoue N and Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770
[15] Hasegawa T, Hino Y, Annou A, Noda H, Kato M and Inoue N 1993 J. Acoust. Soc. Am. 93 154
[16] Qiao Y, Zhang X, Gong M, Wang H and Liu X 2020 J. Appl. Phys. 128 044902
[17] Mitri F G 2015 Ultrasonics 62 244
[18] Sharma G S, Marsick A, Maxit L, Skvortsov A, MacGillivray I and Kessissoglou N 2021 J. Acoust. Soc. Am. 150 4308
[19] Gong M, Xu X, Qiao Y, Liu J, He A and Liu X 2024 Chin. Phys. B 33 014302
[20] Janele P J, Mioduchowski A and Haddow J B 1991 Int. J. Engng Sci. 29 1585
[21] Laulagnet B and Guyader J L 1994 J. Acoust. Soc. Am. 96 277
[22] Jamali J, Naei M H, Honarvar F and Rajabi M 2011 Journal of Mechanics 27 227
[23] Ilinskii Y A, Zabolotskaya E A, Hay T A and Hamilton M F 2012 J. Acoust. Soc. Am. 132 1346
[24] Cai L W 2004 J. Acoust. Soc. Am. 115 986
[25] Shaw R P and Tai G 1974 J. Acoust. Soc. Am. 56 1437
[26] Roumeliotis J A and Kakogiannos N B 1995 J. Acoust. Soc. Am. 97 2074
[27] Danila E B, Conoir J M and Izbicki J L 1995 J. Acoust. Soc. Am. 98 3326
[28] Simao A G, Guimaraes L G and de Mendonça J P R F 1999 Opt. Commun. 170 137
[29] Hasheminejad S M and Kazemirad S 2008 J. Sound. Vib. 318 506
[30] Hasheminejad S M and Alibakhshi M A 2008 Journal of Zhejiang University: Science A 9 65
[31] Mitri F G 2020 Chin. Phys. B 29 114302
[32] Junger M C 1952 J. Acoust. Soc. Am. 24 366
[33] Wiscombe W J 1980 Appl. Opt. 19 1505
[34] Chang Q, Zang Y, Lin W, Su C and Wu P 2022 Chin. Phys. B 31 044302
[35] Topchyan A, Tatarinov A, Sarvazyan N and Sarvazyan A 2006 Ultrasonics 44 259
[36] Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B and Tarnok A 2014 Front. Physiol. 5 00218
[37] Lemaire T, Vicari E, Neufeld E, Kuster N and Micera S 2021 IScience 24 103085
[38] Demir I E, Tieftrunk E, Schorn S, Saricaoglu Ö C, Pfitzinger P L, Teller S, Wang K, Waldbaur C, Kurkowski M U, Wörmann S M, Shaw V E, Kehl T, Laschinger M, Costello E, Algül H, Friess H and Ceyhan G O 2016 BMJ-BRIT MED. J. 65 1001
[39] Deborde S and Wong R J 2022 Adv. Biol. 6 2200089
[40] Yuasa C, Tomita Y, Shono M, Ishimura K and Ichihara A 1993 J. Cell. Physiol. 156 522
[41] Sarvazyan A, Tatarinov A and Sarvazyan N 2005 Ultrasonics 43 661
[42] Wang Y, Yao J, Wu X, Wu D and Liu X 2017 J. Appl. Phys. 122 094902
[1] Scheme of negative acoustic radiation force based on a multiple-layered spherical structure
Menyang Gong(宫门阳), Xin Xu(徐鑫), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Aijun He(何爱军), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2024, 33(1): 014302.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[4] Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2021, 30(4): 044302.
[5] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[6] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[7] Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder
F G Mitri. Chin. Phys. B, 2020, 29(11): 114302.
[8] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[9] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[10] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
[11] Driven self-assembly of hard nanoplates on soft elastic shells
Zhang Yao-Yang (章尧旸), Hua Yun-Feng (华昀峰), Deng Zhen-Yu (邓真渝). Chin. Phys. B, 2015, 24(11): 118202.
No Suggested Reading articles found!