ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field |
Rui-Qi Pan(潘瑞琪), Zhi-Wei Du(杜芷玮), Cheng-Hui Wang(王成会)†, Jing Hu(胡静)‡, and Run-Yang Mo(莫润阳) |
Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract A model with three-layer structure is introduced to explore the acoustic radiation force (ARF) on composite particles with an elastic thin shell. Combing acoustic scattering of cylinder and the thin-shell theorem, the ARF expression was derived, and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained. It was found that many factors, such as medium properties, acoustic parameters, eccentricity, and radius ratio of the inner liquid column, affect the acoustic scattering field of the particle, which in turn changes the forces and torque. The acoustic response varies with the particle structures, so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle. The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column. The decrease of the inner liquid density may suppress the high-order resonance peaks, and internal fluid column has less effects on the change in force on composite particle at $ka>3$, while limited differences exist at $ka<3$. The axial torque on particles due to geometric asymmetry is closely related to $ka$ and the eccentricity. The distribution of positive and negative force and torque along the axis $ka$ exhibits that composite particle can be manipulated or separated by ultrasound. Our theoretical analysis can provide support for the acoustic manipulation, sorting, and targeting of inhomogeneous particles.
|
Received: 12 April 2024
Revised: 14 June 2024
Accepted manuscript online: 01 July 2024
|
PACS:
|
43.25.+y
|
(Nonlinear acoustics)
|
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374441 and 11974232) and the Fund from Yulin Science and Technology Bureau (Grant No. CXY-2022-178). |
Corresponding Authors:
Cheng-Hui Wang, Jing Hu
E-mail: wangld001@snnu.edu.cn;hjwlx@snnu.edu.cn
|
Cite this article:
Rui-Qi Pan(潘瑞琪), Zhi-Wei Du(杜芷玮), Cheng-Hui Wang(王成会), Jing Hu(胡静), and Run-Yang Mo(莫润阳) Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field 2024 Chin. Phys. B 33 094302
|
[1] Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X, Townsend P A and Hill M 2011 Biomicrofluidics 5 044108 [2] Mittelstein D R, Ye J, Schibber E F, Roychoudhury A, Martinez L T, Fekrazad M H, Ortiz M, Lee P P, Shapiro M G and Gharib M 2020 Appl. Phys. Lett. 116 013701 [3] Alan B, Utangaç M, Göya C and Daǧgülli M 2016 Med. Sci. Monit. 22 4523 [4] Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P H, Truica C I, Drabick J J, El-Deiry W S, Suresh S and Huang T J 2015 Proc. Natl. Acad. Sci. USA 112 4970 [5] Kopechek J A, McTiernan C F, Chen X, Zhu J, Mburu M, Feroze R, Whitehurst D A, Lavery L, Cyriac J and Villanueva F S 2019 Theranostics 9 7088 [6] Lum A F H, Borden M A, Dayton P A, Kruse D E, Simon S I and Ferrara K W 2006 Journal of Controlled Release 111 128 [7] Sánchez M, Anitua E, Delgado D, Prado R, Sánchez P, Fiz N, Guadilla J, Azofra J, Pompei O, Orive G, Ortega M, Yoshioka T and Padilla S 2015 J. Tissue. Eng. Regener. Med. 11 1619 [8] Rapoport N, Kennedy A M, Shea J E, Scaife C L and Nam K H 2010 Mol. Pharm. 7 22 [9] Meng L, Cai F, Li F, Zhou W, Niu L and Zheng H 2019 J. Phys. D: Appl. Phys. 52 273001 [10] Zhang R, Guo H, Deng W, Huang X, Li F, Lu J and Liu Z 2020 Appl. Phys. Lett. 116 123503 [11] Sriphutkiat Y, Kasetsirikul S, Ketpun D and Zhou Y 2019 Sci. Rep. 9 17774 [12] Yamaguchi J, Hasegawa H and Kanai H 2012 J. Med. Ultrasonics 39 279 [13] Wu J, Du G, Work S S and Warshaw D M 1990 J. Acoust. Soc. Am. 87 581 [14] Hasegawa T, Saka K, Inoue N and Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770 [15] Hasegawa T, Hino Y, Annou A, Noda H, Kato M and Inoue N 1993 J. Acoust. Soc. Am. 93 154 [16] Qiao Y, Zhang X, Gong M, Wang H and Liu X 2020 J. Appl. Phys. 128 044902 [17] Mitri F G 2015 Ultrasonics 62 244 [18] Sharma G S, Marsick A, Maxit L, Skvortsov A, MacGillivray I and Kessissoglou N 2021 J. Acoust. Soc. Am. 150 4308 [19] Gong M, Xu X, Qiao Y, Liu J, He A and Liu X 2024 Chin. Phys. B 33 014302 [20] Janele P J, Mioduchowski A and Haddow J B 1991 Int. J. Engng Sci. 29 1585 [21] Laulagnet B and Guyader J L 1994 J. Acoust. Soc. Am. 96 277 [22] Jamali J, Naei M H, Honarvar F and Rajabi M 2011 Journal of Mechanics 27 227 [23] Ilinskii Y A, Zabolotskaya E A, Hay T A and Hamilton M F 2012 J. Acoust. Soc. Am. 132 1346 [24] Cai L W 2004 J. Acoust. Soc. Am. 115 986 [25] Shaw R P and Tai G 1974 J. Acoust. Soc. Am. 56 1437 [26] Roumeliotis J A and Kakogiannos N B 1995 J. Acoust. Soc. Am. 97 2074 [27] Danila E B, Conoir J M and Izbicki J L 1995 J. Acoust. Soc. Am. 98 3326 [28] Simao A G, Guimaraes L G and de Mendonça J P R F 1999 Opt. Commun. 170 137 [29] Hasheminejad S M and Kazemirad S 2008 J. Sound. Vib. 318 506 [30] Hasheminejad S M and Alibakhshi M A 2008 Journal of Zhejiang University: Science A 9 65 [31] Mitri F G 2020 Chin. Phys. B 29 114302 [32] Junger M C 1952 J. Acoust. Soc. Am. 24 366 [33] Wiscombe W J 1980 Appl. Opt. 19 1505 [34] Chang Q, Zang Y, Lin W, Su C and Wu P 2022 Chin. Phys. B 31 044302 [35] Topchyan A, Tatarinov A, Sarvazyan N and Sarvazyan A 2006 Ultrasonics 44 259 [36] Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B and Tarnok A 2014 Front. Physiol. 5 00218 [37] Lemaire T, Vicari E, Neufeld E, Kuster N and Micera S 2021 IScience 24 103085 [38] Demir I E, Tieftrunk E, Schorn S, Saricaoglu Ö C, Pfitzinger P L, Teller S, Wang K, Waldbaur C, Kurkowski M U, Wörmann S M, Shaw V E, Kehl T, Laschinger M, Costello E, Algül H, Friess H and Ceyhan G O 2016 BMJ-BRIT MED. J. 65 1001 [39] Deborde S and Wong R J 2022 Adv. Biol. 6 2200089 [40] Yuasa C, Tomita Y, Shono M, Ishimura K and Ichihara A 1993 J. Cell. Physiol. 156 522 [41] Sarvazyan A, Tatarinov A and Sarvazyan N 2005 Ultrasonics 43 661 [42] Wang Y, Yao J, Wu X, Wu D and Liu X 2017 J. Appl. Phys. 122 094902 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|