Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127504    DOI: 10.1088/1674-1056/ad8cba
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max

Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵)†, and Shishou Kang(康仕寿)‡
School of Physics, Shandong University, Jinan 250100, China
Abstract  The melt-spun ribbons of nominal composition Pr$_{9}$Fe$_{84.2-x}$B$_{6.2}$P$_{0.3}$Zr$_{0.3}$Cu$_{x}$ ($x=0$, 0.5, 1, 2) were prepared at wheel speeds of 21 m$\cdot$s$^{-1}$, 27 m$\cdot$s$^{-1}$, 30 m$\cdot$s$^{-1}$, and 33 m$\cdot$s$^{-1}$. The XRD patterns show that as the wheel speed increases, the crystallinity of the 2:14:1 hard phase decreases, while that of the $\alpha $-Fe soft phase increases. The $(BH)_{\rm max}$, remanence, and coercivity are improved from 63 kJ$\cdot$m$^{-3}$, 0.85 T, and 515 kA$\cdot$m$^{-1}$ for the Cu-free ribbons to 171 kJ$\cdot$m$^{-3}$, 1.08 T, and 684 kA$\cdot$m$^{-1}$ with $x=0.5$. The high squareness ratio of $J_{\rm r}/J_{\rm s} \sim 0.82$ at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$) indicates strong exchange coupling due to small grain sizes of 15 nm and 30 nm for soft and hard magnetic phases, respectively. The SEM images revealed smooth morphology and uniform element distribution at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$), contributing to the high magnetic properties. The low recoil permeability ($\mu_{\rm rec}$) value of $5.466\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ to $1.970\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ confirms the strong exchange coupling with $x=0.5$ (27 m$\cdot$s$^{-1}$). The initial magnetization curves show that the coercivity mechanism of the Cu-free alloy evolves from the nucleation of the reverse domain to the domain wall pinning as the wheel speed increases, resulting in a high coercivity value of 818 kA$\cdot$m$^{-1}$ (33 m$\cdot$s$^{-1}$). Conversely, for the Cu-added alloy, the coercivity mechanism changes from pinning to the nucleation of the reverse domain from low to high wheel speed.
Keywords:  Cu addition      nanocomposite      magnetic properties      energy product      remanence  
Received:  22 July 2024      Revised:  15 October 2024      Accepted manuscript online:  30 October 2024
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.50.Ww (Permanent magnets)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074220 and 11627805) and the National Key Research and Development Program of China (Grant No. 2023YFA1406604).
Corresponding Authors:  Guangbing Han, Shishou Kang     E-mail:  hangb@sdu.edu.cn;skang@sdu.edu.cn

Cite this article: 

Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵), and Shishou Kang(康仕寿) Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max 2024 Chin. Phys. B 33 127504

[1] Gutfleisch O, Willard MA, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[2] Szmaja W, Grobelny J, Cichomski M, Hirosawa S and Shigemoto Y 2011 Acta Mater. 59 531
[3] Li Y, Fan X, Jia Z, Fan L, Ding G, Liu X, Guo S, Zheng B, Cao S, Chen R and Yan A 2024 Chin. Phys. B 33 037508
[4] Liu Z, He J and Ramanujan R V 2021 Mater. Des. 209 110004
[5] Mican S, Hirian R, Isnard O, Chicinaş I and Pop V 2015 Phys. Procedia 75 1314
[6] Hewei D, Chunxiang C, Wei Y and Jibing S 2017 J. Rare Earths 35 468
[7] Coey J M D 2020 J. Eng. 6 119
[8] Wang L, Quan Q, Zhang L, Hu X, Rehman S, Jiang Q, Du J and Zhong J 2018 Appl. Phys. 123 113904
[9] Yang Z, Chen Y, Liu W, Li Y, Cong L, Wu Q, Zhang H, Lu Q, Zhang D and Yue M 2023 Chin. Phys. B 32 047504
[10] Zeng X R, Sheng H C, Jin C X and Qian H X 2016 J. Magn. Magn. Mater. 401 1155
[11] Herbst J F 1991 Rev. Mod. Phys. 63 819
[12] Yang S, Liu X, Li S, Qin W, Song X, Lu M and Du Y 2003 J. Alloys Compd. 358 316
[13] Goll D and Kronmüller H 2000 Sci. Nat. 87 423
[14] Rong C and Shen B 2011 Chin. Phys. B 27 117502
[15] Kanekiyo H, Uehara M and Hirosawa S 1993 IEEE Tran. Magn. 29 2863
[16] Zhang W Y, Kharel P, Al-Omari I A, Shield J E and Sellmyer D J 2016 Phil. Mag. 96 2800
[17] Wang C Z, Liu L, Sun Y L, Zhao J T, Zhou B, Tu S S,Wang C G, Ding Y and Yan A R 2023 Chin. Phys. B 32 020704
[18] Alam M K, Han G B and Kang S S 2021 J. Magn. Magn. Mater. 517 167345
[19] Zhang W, Kazahari A, Yubuta K, Makino A, Wang Y, Umetsu R and Li Y 2014 J. Alloys Compd. 586 294
[20] Bao X, Gao X, Zhang M, Qiao Y, Guo X, Zhu J and Zhou S 2008 J. Uni. Sci. Tech. Beijing Mineral. Met. Mater. 15 753
[21] Withanawasam L, Zhang Y J and Hadjipanayis G C 1991 J. Appl. Phys. 70 6450
[22] Fan GJ, LöserW, Roth S, Eckert J and Schultz L 1991 Appl. Phys. Lett. 75 2984
[23] Herbst J F, Fuerst C D, Mishra R K, Murphy C B and Wingerden D J V 1991 J. Appl. Phys. 69 5823
[24] Munan Y, Shuwei Z, Yaojun L, Chunming W, Jiajie L and Bin Y 2018 Mater. Res. Express 6 026534
[25] Wang Z, Zhang M, Zhou S, Qiao Y andWang R 2000 J. Alloys Compd. 309 212
[26] Salazar D, Martín-Cid A, Madugundo R, Garitaonandia J S, Barandiaran J M and Hadjipanayis G C 2006 J. Appl. Phys D: Appl. Phys. 50 015305
[27] Yang B, Shen B G, Zhao T Y and Sun J R 2007 Mater. Sci. Eng: B 145 11
[28] Hirosawa S, Shigemoto Y, Miyoshi T and Kanekiyo H 2003 Scr. Mater. 48 839
[29] Hono K, Ping D H, Ohnuma M and Onodera H 1991 Acta Mater. 47 997
[30] Ping D H, Hono K, Kanekiyo H and Hirosawa S 1991 Acta Mater. 47 4641
[31] Patterson A L 1939 Phys. Rev. 56 978
[32] Suárez G M, Garcıa J I E, Cuevas J L, Gutiérrez G V, Molinar H M and Nonell J M 1999 J. Magn. Magn. Mater. 206 37
[33] Hirosawa S, Kanekiyo H, Shigemoto Y, Murakami K, Miyoshi T and Shioya Y 2002 J. Magn. Magn. Mater. 239 424
[34] Wang Z, Zhou S, Zhang M, Qiao Y and Wang R 1999 J. Appl. Phys. 86 7010
[35] Li A H, Chiu C H, Chnag H W, Chang W C and Li W 2007 J. Alloys Compd. 437 197
[36] Alam M K, Raza S, Han G B and Kang S S 2023 Phys. Status Solidi (a) 220 2200656
[37] Wang L, Wang J, Rong M, Rao G and Zhou H 2018 J. Rare Earths 36 1179
[38] Poenaru I, Lixandru A, Riegg S, Fayyazi B, Taubel A, Güth K, Gauß R and Gutfleisch O 2019 J. Magn. Magn. Mater. 478 198
[39] Alam M K, Han G B and Kang S S 2020 Rare Metals 39 41
[40] Herbst J F, Fuerst C D, Mishra R K, Murphy C B and Wingerden D J V 1991 J. Appl. Phys. 69 5823
[41] Goll D, Seeger M and Kronmüller H 1998 J. Magn. Magn. Mater. 185 49
[42] Panagiotopoulos I, Withanawasam L and Hadjipanayis G C 1996 J. Magn. Magn. Mater. 152 353
[43] Alam M K, Raza S, Han G B and Kang 2024 Phys. Status Solidi (a) 221 2300626
[44] Zhang Y, Li W, Li H and Zhang X 2013 J. Phys. D: Appl. Phys. 47 015002
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[3] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[4] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[5] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[6] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[7] Enhanced soft magnetic properties of SiO2-coated FeSiCr magnetic powder cores by particle size effect
Mingyue Ge(葛铭悦), Likang Xiao(肖礼康), Xiaoru Liu(刘潇如), Lin Pan(潘嶙), Zhangyang Zhou(周章洋), Jianghe Lan(蓝江河), Zhengwei Xiong(熊政伟), Jichuan Wu(吴冀川), and Zhipeng Gao(高志鹏). Chin. Phys. B, 2024, 33(10): 107503.
[8] Impact of Co2+ substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios
Yang Sun(孙洋), Ruoshui Liu(刘若水), Huayang Gong(宫华扬), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(10): 107506.
[9] Effects of Cu and Co additions on the crystallization and magnetic properties of FeNbB alloy
Wan-Qiu Yu(于万秋), Bo Tian(田博), Ping-Li Zhang(张平丽), Jia-Hui Wang(王佳慧), and Zhong Hua(华中). Chin. Phys. B, 2023, 32(8): 088102.
[10] Improving physical properties of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels via the Hofmeister effect
Rongrong Guo(郭蓉蓉), Deshuai Yu(余德帅), Yifan Huang(黄一帆), Sen Wang(王森), Cong Fu(付聪), Shuihong Zhu(朱水洪), Jia Yi(易佳), Hanqi Wang(王涵淇), and Youhui Lin(林友辉). Chin. Phys. B, 2023, 32(8): 088103.
[11] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[12] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[13] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[14] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[15] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
No Suggested Reading articles found!