CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max |
Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵)†, and Shishou Kang(康仕寿)‡ |
School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract The melt-spun ribbons of nominal composition Pr$_{9}$Fe$_{84.2-x}$B$_{6.2}$P$_{0.3}$Zr$_{0.3}$Cu$_{x}$ ($x=0$, 0.5, 1, 2) were prepared at wheel speeds of 21 m$\cdot$s$^{-1}$, 27 m$\cdot$s$^{-1}$, 30 m$\cdot$s$^{-1}$, and 33 m$\cdot$s$^{-1}$. The XRD patterns show that as the wheel speed increases, the crystallinity of the 2:14:1 hard phase decreases, while that of the $\alpha $-Fe soft phase increases. The $(BH)_{\rm max}$, remanence, and coercivity are improved from 63 kJ$\cdot$m$^{-3}$, 0.85 T, and 515 kA$\cdot$m$^{-1}$ for the Cu-free ribbons to 171 kJ$\cdot$m$^{-3}$, 1.08 T, and 684 kA$\cdot$m$^{-1}$ with $x=0.5$. The high squareness ratio of $J_{\rm r}/J_{\rm s} \sim 0.82$ at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$) indicates strong exchange coupling due to small grain sizes of 15 nm and 30 nm for soft and hard magnetic phases, respectively. The SEM images revealed smooth morphology and uniform element distribution at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$), contributing to the high magnetic properties. The low recoil permeability ($\mu_{\rm rec}$) value of $5.466\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ to $1.970\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ confirms the strong exchange coupling with $x=0.5$ (27 m$\cdot$s$^{-1}$). The initial magnetization curves show that the coercivity mechanism of the Cu-free alloy evolves from the nucleation of the reverse domain to the domain wall pinning as the wheel speed increases, resulting in a high coercivity value of 818 kA$\cdot$m$^{-1}$ (33 m$\cdot$s$^{-1}$). Conversely, for the Cu-added alloy, the coercivity mechanism changes from pinning to the nucleation of the reverse domain from low to high wheel speed.
|
Received: 22 July 2024
Revised: 15 October 2024
Accepted manuscript online: 30 October 2024
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.50.Ww
|
(Permanent magnets)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074220 and 11627805) and the National Key Research and Development Program of China (Grant No. 2023YFA1406604). |
Corresponding Authors:
Guangbing Han, Shishou Kang
E-mail: hangb@sdu.edu.cn;skang@sdu.edu.cn
|
Cite this article:
Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵), and Shishou Kang(康仕寿) Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max 2024 Chin. Phys. B 33 127504
|
[1] Gutfleisch O, Willard MA, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821 [2] Szmaja W, Grobelny J, Cichomski M, Hirosawa S and Shigemoto Y 2011 Acta Mater. 59 531 [3] Li Y, Fan X, Jia Z, Fan L, Ding G, Liu X, Guo S, Zheng B, Cao S, Chen R and Yan A 2024 Chin. Phys. B 33 037508 [4] Liu Z, He J and Ramanujan R V 2021 Mater. Des. 209 110004 [5] Mican S, Hirian R, Isnard O, Chicinaş I and Pop V 2015 Phys. Procedia 75 1314 [6] Hewei D, Chunxiang C, Wei Y and Jibing S 2017 J. Rare Earths 35 468 [7] Coey J M D 2020 J. Eng. 6 119 [8] Wang L, Quan Q, Zhang L, Hu X, Rehman S, Jiang Q, Du J and Zhong J 2018 Appl. Phys. 123 113904 [9] Yang Z, Chen Y, Liu W, Li Y, Cong L, Wu Q, Zhang H, Lu Q, Zhang D and Yue M 2023 Chin. Phys. B 32 047504 [10] Zeng X R, Sheng H C, Jin C X and Qian H X 2016 J. Magn. Magn. Mater. 401 1155 [11] Herbst J F 1991 Rev. Mod. Phys. 63 819 [12] Yang S, Liu X, Li S, Qin W, Song X, Lu M and Du Y 2003 J. Alloys Compd. 358 316 [13] Goll D and Kronmüller H 2000 Sci. Nat. 87 423 [14] Rong C and Shen B 2011 Chin. Phys. B 27 117502 [15] Kanekiyo H, Uehara M and Hirosawa S 1993 IEEE Tran. Magn. 29 2863 [16] Zhang W Y, Kharel P, Al-Omari I A, Shield J E and Sellmyer D J 2016 Phil. Mag. 96 2800 [17] Wang C Z, Liu L, Sun Y L, Zhao J T, Zhou B, Tu S S,Wang C G, Ding Y and Yan A R 2023 Chin. Phys. B 32 020704 [18] Alam M K, Han G B and Kang S S 2021 J. Magn. Magn. Mater. 517 167345 [19] Zhang W, Kazahari A, Yubuta K, Makino A, Wang Y, Umetsu R and Li Y 2014 J. Alloys Compd. 586 294 [20] Bao X, Gao X, Zhang M, Qiao Y, Guo X, Zhu J and Zhou S 2008 J. Uni. Sci. Tech. Beijing Mineral. Met. Mater. 15 753 [21] Withanawasam L, Zhang Y J and Hadjipanayis G C 1991 J. Appl. Phys. 70 6450 [22] Fan GJ, LöserW, Roth S, Eckert J and Schultz L 1991 Appl. Phys. Lett. 75 2984 [23] Herbst J F, Fuerst C D, Mishra R K, Murphy C B and Wingerden D J V 1991 J. Appl. Phys. 69 5823 [24] Munan Y, Shuwei Z, Yaojun L, Chunming W, Jiajie L and Bin Y 2018 Mater. Res. Express 6 026534 [25] Wang Z, Zhang M, Zhou S, Qiao Y andWang R 2000 J. Alloys Compd. 309 212 [26] Salazar D, Martín-Cid A, Madugundo R, Garitaonandia J S, Barandiaran J M and Hadjipanayis G C 2006 J. Appl. Phys D: Appl. Phys. 50 015305 [27] Yang B, Shen B G, Zhao T Y and Sun J R 2007 Mater. Sci. Eng: B 145 11 [28] Hirosawa S, Shigemoto Y, Miyoshi T and Kanekiyo H 2003 Scr. Mater. 48 839 [29] Hono K, Ping D H, Ohnuma M and Onodera H 1991 Acta Mater. 47 997 [30] Ping D H, Hono K, Kanekiyo H and Hirosawa S 1991 Acta Mater. 47 4641 [31] Patterson A L 1939 Phys. Rev. 56 978 [32] Suárez G M, Garcıa J I E, Cuevas J L, Gutiérrez G V, Molinar H M and Nonell J M 1999 J. Magn. Magn. Mater. 206 37 [33] Hirosawa S, Kanekiyo H, Shigemoto Y, Murakami K, Miyoshi T and Shioya Y 2002 J. Magn. Magn. Mater. 239 424 [34] Wang Z, Zhou S, Zhang M, Qiao Y and Wang R 1999 J. Appl. Phys. 86 7010 [35] Li A H, Chiu C H, Chnag H W, Chang W C and Li W 2007 J. Alloys Compd. 437 197 [36] Alam M K, Raza S, Han G B and Kang S S 2023 Phys. Status Solidi (a) 220 2200656 [37] Wang L, Wang J, Rong M, Rao G and Zhou H 2018 J. Rare Earths 36 1179 [38] Poenaru I, Lixandru A, Riegg S, Fayyazi B, Taubel A, Güth K, Gauß R and Gutfleisch O 2019 J. Magn. Magn. Mater. 478 198 [39] Alam M K, Han G B and Kang S S 2020 Rare Metals 39 41 [40] Herbst J F, Fuerst C D, Mishra R K, Murphy C B and Wingerden D J V 1991 J. Appl. Phys. 69 5823 [41] Goll D, Seeger M and Kronmüller H 1998 J. Magn. Magn. Mater. 185 49 [42] Panagiotopoulos I, Withanawasam L and Hadjipanayis G C 1996 J. Magn. Magn. Mater. 152 353 [43] Alam M K, Raza S, Han G B and Kang 2024 Phys. Status Solidi (a) 221 2300626 [44] Zhang Y, Li W, Li H and Zhang X 2013 J. Phys. D: Appl. Phys. 47 015002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|