Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046107    DOI: 10.1088/1674-1056/adb8b7
RAPID COMMUNICATION Prev   Next  

Design and preparation of amorphous carbon nanotubes reinforced copper

Xiaona Ren(任晓娜)†, Wentao Wu(吴文涛), Zhipei Chen(陈志培), and Changchun Ge(葛昌纯)
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Carbon nanotubes (CNTs) reinforced copper (CNTs/Cu) is one of the most promising and extensively researched materials for replacing traditional Cu-based materials in high-load and high-current applications, particularly within the aerospace industry. Amorphous carbon nanotubes (aCNTs) are a type of carbon nanotubes characterized by the presence of mesopores distributed across their amorphous sidewalls, facilitating connectivity between the hollow core and the external environment. Therefore, we propose utilizing aCNTs as a reinforcing agent for Cu. The mesoporous structure of aCNTs facilitates the interpenetration of Cu into the aCNTs, thereby maintaining the continuity of the matrix properties. Experimental results demonstrate that Cu effectively penetrates the mesoporous sidewalls of aCNTs. Both pure Cu and aCNTs-reinforced Cu exhibit comparable electrical conductivity, while the hardness of the aCNTs/Cu composite is significantly enhanced. Additionally, both the density and porosity of aCNTs/Cu are lower than those of pure Cu, and the introduction of aCNTs helps to reduce the sintering temperature.
Keywords:  amorphous carbon nanotubes      copper-based composite      interpenetrating composites      mesoporous      conductivity  
Received:  03 January 2025      Revised:  08 February 2025      Accepted manuscript online:  21 February 2025
PACS:  61.43.Gt (Powders, porous materials)  
  61.46.-w (Structure of nanoscale materials)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  62.23.Pq (Composites (nanosystems embedded in a larger structure))  
Corresponding Authors:  Xiaona Ren     E-mail:  renxn@ustb.edu.cn

Cite this article: 

Xiaona Ren(任晓娜), Wentao Wu(吴文涛), Zhipei Chen(陈志培), and Changchun Ge(葛昌纯) Design and preparation of amorphous carbon nanotubes reinforced copper 2025 Chin. Phys. B 34 046107

[1] Deng H, Yi J, Xia C and Yi Y 2017 J. Alloys Compd. 727 260
[2] Bazbouz M B, Aziz A, Copic D, De Volder M and Welland M E 2021 Advanced Electronic Materials 7 2001213
[3] Akbarpour M R, Mousa Mirabad H, Alipour S and Kim H S 2020 Materials Science and Engineering:A 773 138888
[4] Chen X, Tao J, Yi J, Li C, Bao R, Liu Y, You X and Tan S 2018 Materials Science and Engineering:A 712 790
[5] Wu S, Liu Y, Yu J, Zhao Q, Tao J, Wu Z, Zhang J, Fan Y, Liu Y, Li C and Yi J 2023 Journal of Materials Research and Technology 23 5066
[6] Park M, Kim B H, Kim S, Han D S, Kim G and Lee K R 2011 Carbon 49 811
[7] Wei X, Tao J, Liu Y, Bao R, Li F, Fang D, Li C and Yi J 2019 Diamond and Related Materials 99 107537
[8] Wang H, Zhang Z H, Hu Z Y, Song Q, Yin S P, Kang Z and Li S L 2018 Materials Science and Engineering:A 715 163
[9] Yang P, You X, Yi J, Fang D, Bao R, Shen T, Liu Y, Tao J, Li C, Tan S and Guo S 2018 J. Alloys Compd. 752 431
[10] Milowska K Z, Ghorbani-Asl M, Burda M, Wolanicka L, Cati c N, D. Bristowe P and Koziol K K 2017 Nanoscale 9 8458
[11] Chen X, Tao J, Yi J, Liu Y, Bao R, Li C, Tan S and You X 2018 Diamond and Related Materials 88 74
[12] Zheng Z, Chen Y, Zhang M, Liu J, Yang A, Chen L, Yang Q, Lou D and Liu D 2021 Materials Science and Engineering:A 804 140788
[13] Liu D, Wang P, Zhang X, Chen C, Zou J, Hou L, Zhao J, Xue J, Ding F, Gao Z and Li Q 2023 Carbon 201 837
[14] Ren X, Xia M, Yan Q and Ge C 2016 Chemical Physics Letters 662 286
[15] Ren X N, Xia M, Yan Q Z and Ge C C 2019 Chin. Phys. B 28 036801
[16] Ren X, Chang Y and Ge C 2024 International Journal of Molecular Sciences 25 12957
[17] Mishra S, Mohapatra S, Mudliyar B S, Das S and Das K 2024 J. Alloys Compd. 971 172681
[18] Guo X, Yang Y, Song K, Shaolin L, Jiang F and Wang X 2021 Journal of Materials Research and Technology 11 1469
[19] Wei X, Tao J, Hu Y, Liu Y, Bao R, Li F, Fang D, Li C and Yi J 2021 Materials Science and Engineering A 816 141248
[20] Castellanos-Leal E, Martínez-Guerra E, Chavez-Valdez A and Arizmendi-Morquecho A 2024 Diamond and Related Materials 142 110765
[1] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[2] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[3] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[4] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[5] First-principles study of electronic and magnetic properties of self-intercalated van der Waals magnet Cr3Ge2Te6
Jia-wan Li(李家万), Shi-Bo Zhao(赵世博), Lin Zhuang(庄琳), and Yusheng Hou(侯玉升). Chin. Phys. B, 2025, 34(3): 036301.
[6] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[7] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[8] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[9] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[10] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[11] Intermediately coupled type-II superconductivity in a La-based kagome metal La3Al
Yingpeng Yu(于英鹏), Zhaolong Liu(刘兆龙), Zhaoxu Chen(陈昭旭), Qi Li(李琦), Yulong Wang(王玉龙), Xuhui Wang(王旭辉), Chunsheng Gong(龚春生), Zhaotong Zhuang(庄照通), Bin-Bin Ruan(阮彬彬), Huifen Ren(任会芬), Peijie Sun(孙培杰), Jian-Gang Guo(郭建刚), and Shifeng Jin(金士锋). Chin. Phys. B, 2025, 34(1): 017401.
[12] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[13] Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder
Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷). Chin. Phys. B, 2024, 33(9): 097502.
[14] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[15] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
No Suggested Reading articles found!