Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097501    DOI: 10.1088/1674-1056/ad57aa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

MHz cut-off frequency and permeability mechanism of iron-based soft magnetic composites

Xiao-Wei Jin(金校伟), Tong Li(李通), Hui-Gang Shi(史慧刚), and De-Sheng Xue(薛德胜)†
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments. Here, a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported. The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring, the distribution of particles, and the particle size. The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect. An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data. This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.
Keywords:  cut-off frequency      permeability      eddy current effect      soft magnetic composites  
Received:  26 February 2024      Revised:  14 May 2024      Accepted manuscript online:  13 June 2024
PACS:  75.40.Gb (Dynamic properties?)  
  76.60.Jx (Effects of internal magnetic fields)  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91963201 and 12174163) and the 111 Project (Grant No. B20063).
Corresponding Authors:  De-Sheng Xue     E-mail:  xueds@lzu.edu.cn

Cite this article: 

Xiao-Wei Jin(金校伟), Tong Li(李通), Hui-Gang Shi(史慧刚), and De-Sheng Xue(薛德胜) MHz cut-off frequency and permeability mechanism of iron-based soft magnetic composites 2024 Chin. Phys. B 33 097501

[1] Shokrollahi H and Janghorban K 2007 J. Mater. Process. Technol. 189 1
[2] Wang X, Xu X J, Gong W, Feng Z K and Gong R Z 2014 J. Appl. Phys. 115 17C722
[3] Svensson L, Frogner K, Jeppsson P, Cedell T and Andersson M 2012 J. Magn. Magn. Mater. 324 2717
[4] Feng S J, Ni J L, Hu F, Kan X C, Lv Q R and Liu X S 2022 Chin. Phys. B 31 027503
[5] Ma Y G, Qiao L, Zheng Z Y, Hao H B, Wang H, Sun Z, Tu C F, Wang T, Yang Z and Li F S 2023 Chin. Phys. B 32 084202
[6] Qiao L, Tu C F, Wu W, Wang W B, Yang S Y, Sun Z, Wu P, Yang J B, Wang C S, Wang T and Li F S 2023 Chin. Phys. B 32 054202
[7] Leary A M, Ohodnicki P R and Mchenry M E 2012 JOM 64 772
[8] Silveyra J M, Ferrara E, Huber D L and Monson T C 2018 Science 362 eaao0195
[9] Périgo E A, Weidenfeller B, Kollár P and Füzer J 2018 Appl. Phys. Rev. 5 031301
[10] Dobák S, Füzer J, Kollár P, Strečková M, Bureč R and Fáberová M 2016 J. Alloys Compd. 695 1998
[11] Mu M 2013 High Frequency Magnetic Core Loss Study (Ph.D. Dissertation) (Blacksburg: Virginia polytechnic institute and state university) (in America)
[12] Shokrollahi H, Janghorban K, Mazaleyrat F, Bue M L, Ji V and Tcharkhtchi A 2009 Mater. Chem. Phys. 114 588
[13] Kasagi T, Tsutaoka T and Hatakeyama K 1988 J. Phys. Soc. Jpn. 22 S1 295-297
[14] Calata J N, Lu G and Ngo K 2014 J. Electron. Mater. 43 126
[15] Laurent P, Viau G, Konn A M, Gelin P and Floc’h M Le 1966 J. Magn. Magn. Mater. 160 63
[16] Qiao L, Wen F S, Wei J Q, Wang J B and Li F S 2008 J. Appl. Phys. 103 063903
[17] Acher O, Adenot A L, Lubrano F and Duverger F 1999 J. Appl. Phys. 85 4639
[18] Chikazumi S 1997 Physics of Ferromagnetism, 2nd edn. (New York: Oxford University Press) pp. 575-580
[19] Li W C, Yan H Q, Ying Y, Yu J, Zheng J W, Qiao L, Li J and Che S L 2019 Appl. Phys. Lett. 115 212401
[20] Dobák S, Füzer J, Kollár P, Fáberová M and Bureš R 2017 J. Magn. Magn. Mater. 426 320
[21] Yoon S S and Kim C G 2001 Appl. Phys. Lett. 78 3280
[22] Zhong Z Y, Wang Q, Tao L X, Jin L C, Tang X L, Bai F M and Zhang H W 2012 IEEE Trans. Magn. 48 3622
[23] Li W C, Cai H W, Kang Y, Ying Y, Yu J, Zheng J W, Qiao L, Jiang Y and Che S L 2019 Acta Mater. 167 267
[24] Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L and Du W Y 2005 Eur. Phys. J. B 46 471
[25] Fan X, Wang J, Wu Z Y and Li G Q 2015 Mater. Sci. Eng. B 201 79
[26] Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L and Du Y W 2006 Surf. Coat. Technol. 200 5170
[27] Luo F, Fan X, Luo Z G, Hu W T, Li G Q, Li Y W, Liu X and Wang J 2019 J. Magn. Magn. Mater. 484 218
[28] Wu L Z, Ding J, Jiang H B, Chen L F and Ong C K 2005 J. Magn. Magn. Mater. 285 233
[29] Wu L Z, Ding J, Jiang H B, Neo C P, Chen L F and Ong C K 2006 J. Appl. Phys. 99 083905
[30] Hsiang H, Fan L and Hung J 2018 J. Magn. Magn. Mater. 447 1
[31] Li T, Wang Y, Shi H G, Xi L and Xue D S 2022 J. Magn. Magn. Mater. 545 168750
[32] Clingerman M L, King J A, Schulz K H and Meyers J D 2002 J. Appl. Polym. Sci. 83 1341
[33] Jiang C J, Fan X L and Xue D S 2015 Chin. Phys. B 24 057504
[34] Xu Z B, Li W L, Cui J H, Zhang C H, He D L and Wang T 2023 Appl. Phys. Lett 123 092402
[1] Simulation of magnetization process and Faraday effect of magnetic bilayer films
Sheng Gao(高升), An Du(杜安), Lei Zhang(张磊), Tian-Guang Li(李天广), and Da-Cheng Ma(马大成). Chin. Phys. B, 2024, 33(9): 097505.
[2] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[3] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[4] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[5] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[6] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[7] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[8] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[9] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[10] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[11] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[12] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[13] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[14] High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession
Jiang Chang-Jun (蒋长军), Fan Xiao-Long (范小龙), Xue De-Sheng (薛德胜). Chin. Phys. B, 2015, 24(5): 057504.
[15] Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork
Mei Xi (梅曦), Ren Lin (任琳), Xu Qiang (许强), Zheng Wei (郑炜), Liu Zhi-Cheng (刘志成). Chin. Phys. B, 2015, 24(5): 058701.
No Suggested Reading articles found!