Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010203    DOI: 10.1088/1674-1056/ad01a8
GENERAL Prev   Next  

Research and application of composite stochastic resonance in enhancement detection

Rui Gao(高蕊)1,2, Shangbin Jiao(焦尚彬)1,3,†, and Qiongjie Xue(薛琼婕)1,3
1 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 School of Electronic and Electrical Engineering, Baoji University of Arts and Sciences, Baoji 721016, China;
3 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an University of Technology, Xi'an 710048, China
Abstract  Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance (NCSR) model is proposed by combining the Woods—Saxon (WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect. Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio (PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.
Keywords:  Woods—Saxon      improved piecewise model      composite stochastic resonance (SR)      image denoising  
Received:  16 September 2023      Revised:  08 October 2023      Accepted manuscript online:  10 October 2023
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Fb (Random walks and Levy flights)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62371388) and the Key Research and Development Projects in Shaanxi Province, China (Grant No. 2023-YBGY-044).
Corresponding Authors:  Shangbin Jiao     E-mail:  jiaoshangbin@xaut.edu.cn

Cite this article: 

Rui Gao(高蕊), Shangbin Jiao(焦尚彬), and Qiongjie Xue(薛琼婕) Research and application of composite stochastic resonance in enhancement detection 2024 Chin. Phys. B 33 010203

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A:Math. Gen. 14 L453
[2] Mantegna R and Spagnolo B 1995 Nuovo Cimento D 17 873
[3] Wiesenfelda K and Jaramillob F 1998 Chaos 8 539
[4] Harmer G P, Davis B R and Abbott D 2002 IEEE Trans. Instrum Meas 51 299
[5] Dong H T, Shen X H, Hea K and Wang H Y 2020 Chaos, Solitons and Fractals 141 110428
[6] Xu B H, Duan F B, Bao R H and Li J L 2002 Chaos, Solitons Fractals 13 633
[7] Zhou Z B, Yu W X and Wang J N 2022 Chaos, Solitons and Fractals 154 111642
[8] Yao Y G 2021 Chin. Phys. B 30 060503
[9] Qiao Z J, Elhattab A, Shu X D and He C B 2021 Nonlinear Dyn. 106 707
[10] Qiao Z J, He Y B, Liao C R and Zhu R H 2023 Chaos, Solitons and Fractals 175 113960
[11] Qiao Z J, Lei Y G and Li N P 2019 Mech. Syst. Signal Process. 122 502
[12] Lu S L, He Q B and Wang J 2019 Mech. Syst. Signal Process. 116 230
[13] Semenova N, Porte X, Andreoli L, Jacquot M, Larger L and Brunner D 2019 Chaos 29 103128
[14] Duan L L, Duan F B, Chapeau-Blondeau F and Abbott D 2020 Phys. Lett. A 384 126143
[15] Chen Z J, Duan F B, Chapeau-Blondeau F and Abbott D 2022 Phys. Lett. A 432 128008
[16] Semenova N and Brunner D 2022 Chaos 32 061106
[17] Audhkhasi K, Osoba O and Kosko B 2016 Neural Netw. 78 15
[18] Valenti D, Schimansky-Geier L, Sailer X and Spagnolo B 2006 Eur. Phys. J. B 50 199
[19] Wiesenfeld K and Moss F 1995 Nature 373 33
[20] Qiao Z J, Lei Y G, Lin J and Jia F 2017 Mech. Syst. Signal Process. 84 731
[21] Goask M, Perc M and Kralj S 2011 Eur. Phys. J. B 80 519
[22] Lu S L, He Q B and Kong F R 2014 Mech. Syst. Signal Process. 45 488
[23] Jiao S B, Lei S, Jiang W, Zhang Q and Huang W C 2019 IEEE Access 7 160191
[24] Li H K, He C B, Malekian R and Li Z X 2018 Sensors 18 1264
[25] Zhou Y H, Xu X M, Yin L Z, Ding Y P, Ding J F and Sun K H 2020 Chin. Phys. B 29 040503
[26] La Cognata A, Valenti D, Dubkov A A and Spagnolo B 2010 Phys. Rev. E 821 011121
[27] Guarcello C 2021 Chaos, Solitons and Fractals 153 111531
[28] Lisowski B, Valenti D, Spagnolo B, Bier M and Gudowska-Nowak E 2015 Phys. Rev. E 91 042713
[29] Li QQ, Xu X M, Lin Z Y, Ding Y P, Ding J F and Sun K H 2018 Chin. Phys. B 27 034203
[30] Guarcello C, Valenti D, Spagnolo B, Pierro V and Filatrella G 2019 Phys. Rev. Appl. 11 044078
[31] Guo Y F, Wang L J, Wei F and Tan J G 2020 Indian J. Phys. 94 1625
[32] Mi L N, Guo Y F, Zhang M and Zhuo X J 2023 Chaos, Solitons and Fractals 167 113096
[33] Zhou Y H, Xu X M, Yin L Z, Ding Y P, Ding J F and Sun K H 2020 Chin. Phys. B 29 040503
[34] Mateos J L and Alatriste F R 2021 Chaos 21 047503
[35] Jiao S B, Qiao X X, Lei S and Jiang W 2019 Chin. J. Phys. 59 138
[36] Siqueira M H S, Gatts C E N, Silva R R D and Rebello J M A 2004 Ultrasonics 41 785
[1] Discreet investors exert greater influence on cooperation in the public goods game
Hong-Wei Kang(康洪炜), Zhan-Yao Jin(金展瑶), Ming-Yuan Li(李明远), Mie Wang(旺咩), Xing-Ping Sun(孙兴平), Yong Shen(沈勇), and Qing-Yi Chen(陈清毅). Chin. Phys. B, 2024, 33(3): 030203.
[2] Impact of different interaction behavior on epidemic spreading in time-dependent social networks
Shuai Huang(黄帅), Jie Chen(陈杰), Meng-Yu Li(李梦玉),Yuan-Hao Xu(徐元昊), and Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2024, 33(3): 030205.
[3] Effect of applied electric fields on supralinear dendritic integration of interneuron
Ya-Qin Fan(樊亚琴), Xi-Le Wei(魏熙乐), Mei-Li Lu(卢梅丽), and Guo-Sheng Yi(伊国胜). Chin. Phys. B, 2024, 33(2): 020202.
[4] MetaPINNs: Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Junqiang Song(宋君强), and Hongze Leng(冷洪泽). Chin. Phys. B, 2024, 33(2): 020203.
[5] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
[6] Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣). Chin. Phys. B, 2023, 32(11): 114703.
[7] Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance
Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(张世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(张大伟). Chin. Phys. B, 2023, 32(7): 070204.
[8] Weak signal detection method based on novel composite multistable stochastic resonance
Shangbin Jiao(焦尚彬), Rui Gao(高蕊), Qiongjie Xue(薛琼婕), and Jiaqiang Shi(史佳强). Chin. Phys. B, 2023, 32(5): 050202.
[9] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040207.
[10] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
[11] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[12] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[13] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[14] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[15] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
No Suggested Reading articles found!