Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047306    DOI: 10.1088/1674-1056/adb25f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase transition extracted by principal component analysis in the disordered Moore-Read state

Na Jiang(江娜)1,2,†, Shuaixin Fu(付帅鑫)1, Zhengzhi Ma(马正直)1, and Lian Wang(王莲)1
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2 Southwest Center for Theoretical Physics, Chongqing University, Chongqing 401331, China
Abstract  We study the influence of disorder on the Moore-Read state by principal component analysis (PCA), which is one of the ground state candidates for the 5/2 fractional Hall state. By using PCA, the topological features of the ground state wave functions with different disorder strengths can be distilled. As the disorder strength increases, the Moore-Read state will be destroyed. We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state. The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point. Additionally, the origin of the second component comes from the excited states, which is different from the Laughlin state.
Keywords:  fractional quantum Hall      phase transition      principal component analysis  
Received:  21 October 2024      Revised:  18 January 2025      Accepted manuscript online:  05 February 2025
PACS:  73.43.Nq (Quantum phase transitions)  
  64.70.Tg (Quantum phase transitions)  
  05.30.Rt (Quantum phase transitions)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104075 and 12347101).
Corresponding Authors:  Na Jiang     E-mail:  990202000072@cqjtu.edu.cn

Cite this article: 

Na Jiang(江娜), Shuaixin Fu(付帅鑫), Zhengzhi Ma(马正直), and Lian Wang(王莲) Phase transition extracted by principal component analysis in the disordered Moore-Read state 2025 Chin. Phys. B 34 047306

[1] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[2] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[3] Shibata N and Yoshioka D 2001 Phys. Rev. Lett. 86 5755
[4] Feiguin A E, Rezayi E, Nayak C and Das Sarma S 2008 Phys. Rev. Lett. 100 166803
[5] Zhao J Z, Sheng D N and Haldane F D M 2011 Phys. Rev. B 83 195135
[6] Hu Z X, Papic Z, Johri S, Bhatt R N and Schmitteckert P 2012 Phys. Lett. A 376 2157
[7] Zeng T S, Hu L D and Zhu W 2022 Chin. Phys. Lett. 39 017301
[8] White S R 1992 Phys. Rev. Lett. 69 2863
[9] Zaletel M P, Mong R S K and Pollmann F 2013 Phys. Rev. Lett. 110 236801
[10] Girvin S M, MacDonald A H and Platzman P M 1985 Phys. Rev. Lett. 54 581
[11] Girvin S M, MacDonald A H and Platzman P M 1986 Phys. Rev. B 33 2481
[12] Yang B, Hu Z X, Papic Z and Haldane F D M 2012 Phys. Rev. Lett. 108 256807
[13] Wen X G 1992 Int. J. Mod. Phys. B 6 1711
[14] MacDonald A H 1990 Phys. Rev. Lett. 64 220
[15] Chamon C de C and Wen X G 1994 Phys. Rev. B 49 8227
[16] Wan X, Rezayi E H and Yang K 2003 Phys. Rev. B 68 125307
[17] Wang J H, Meir Y and Gefen Y 2013 Phys. Rev. Lett. 111 246803
[18] Sabo R, Gurman I, Rosenblatt A, et al. 2017 Nat. Phys. 13 491
[19] Fendley P, Fisher M P A and Nayak C 2007 Phys. Rev. B 75 045317
[20] Fradkin E, Nayak C, Tsvelik A and Wilczek F 1998 Nucl. Phys. B 516 704
[21] Das Sarma S, Freedman M and Nayak C 2005 Phys. Rev. Lett. 94 166802
[22] Stern A and Halperin B I 2006 Phys. Rev. Lett. 96 016802
[23] Rosenow B, Halperin B I, Simon S H and Stern A 2008 Phys. Rev. Lett. 100 226803
[24] Bishara B and Nayak C 2008 Phys. Rev. B 77 165302
[25] Bonderson P, Shtengel K and Slingerland J K 2006 Phys. Rev. Lett. 97 016401
[26] Willett R L, Pfeiffer L N and West K W 2009 Proc. Natl. Acad. Sci. USA 106 8853
[27] Willett R L, Pfeiffer L N and West K W 2010 Phys. Rev. B 82 205301
[28] Willett R L, Pfeiffer L N and West K W 2013 arXiv:1301.2594condmat. mes-hall]
[29] Lin X, Du R R and Xie X C 2014 National Science Review 1 564
[30] Kan C L and Fisher M P A 1992 Phys. Rev. B 46 15233
[31] Moon K, Yi H, Kane C L, Girvin S M and Fisher M P A 1993 Phys. Rev. Lett. 71 4381
[32] Kane C L and Fisher M P A 1994 Phys. Rev. Lett. 72 724
[33] Chamon C de C and Wen X G 1993 Phys. Rev. Lett. 70 2605
[34] Lin X, Dillard C, Kastner M A, Pfeiffer L N and West K W 2012 Phys. Rev. B 85 165321
[35] Li Q, Jiang N, Wan X and Hu Z X 2018 J. Phys.: Condens. Matter 30 255601
[36] Hu Z X, Lee K H, Rezayi E H, Wan X and Yang K 2011 New J. Phys. 13 035020
[37] Yang W Q, Li Q, Yang L P and Hu Z X 2019 Chin. Phys. B 6 067303
[38] Yang Y, Pu S Y, Hu Y Y and Hu Z X 2024 arXiv:2412.02320condmat. str-el]
[39] Haldane F D M 1983 Phys. Rev. Lett. 51 605
[40] Haldane F D M and Bernevig B A 2008 Phys. Rev. Lett. 100 246802
[41] Willet R L, Eiisenstein J P, Stormer H L, Tsui D C, Gossard A C and English J H 1987 Phys. Rev. Lett. 59 1776
[42] Wen X G 1992 Int. J. Mod. Phys. B 6 1711
[43] Haldane F D M and Li H 1992 Phys. Rev. Lett. 101 010504
[44] Haldane F D M 2008 Phys. Rev. Lett. 107 116801
[45] Haldane F D M, Wan X, Yang K, Yi S and Qiu R Z 2012 Phys. Rev. B 85 115308
[46] Jiang N, Ke S Y, Ji H X, Wang H, Hu Z X and Wan X 2020 Phys. Rev. B 102 115140
[47] Wan X, Rezayi E H, Yang K, Bhatt R N, Haldane F D M and Sheng D N 2003 Phys. Rev. Lett. 90 256802
[48] Yang K 2023 Chin. Phys. B 32 097303
[49] Bhatt R N and Liu Z 2016 Phys. Rev. Lett. 117 206801
[50] Bhatt R N and Liu Z 2017 Phys. Rev. B 96 115111
[51] Sheng D N and Zhu W 2019 Phys. Rev. Lett. 123 056804
[52] Jiang N, Li Q, Zhu Z and Hu Z X 2017 Annals of Physics 384 225
[53] Lu M, Jiang N and Wan X 2019 Chin. Phys. Lett. 36 087301
[54] Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L and Carleo G 2019 Rev. Mod. Phys. 91 045002
[55] Mehta P, Bukov M, Wang C H, Day A G R, Richardson C, Fisher C K and Schwab D J 2019 Phys. Rep. 810 1
[56] Bedolla E, Padierna L G and Castañeda-Priego R 2021 J. Phys. Condens. Matter 33 053001
[57] Wetzel S J 2017 Phys. Rev. E 96 022140
[58] Zhai H and Wang C. 2017 Phys. Rev. B 96 144432
[59] Jiang N and Lu M 2020 Chin. Phys. Lett. 37 117302
[60] Moore G, Read N and Nucl 1991 Nucl. Phys. B 360 362
[61] Lee S S, Ryu S, Nayak C and Fishaer M P A 2007 Phys. Rev. Lett. 99 236807
[62] Levin M, Halparin B I and Rosenow B 2007 Phys. Rev. Lett. 99 236806
[63] Pakrouski K, Peterson M R, Jolicoeur T, Scarola V W, Nayak C and Troyer M 2015 Phys. Rev. X 05 021004
[64] Greiter M, Wen X G and Wilczak F 1991 Phys. Rev. Lett. 66 3205
[1] Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica
Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君). Chin. Phys. B, 2025, 34(4): 046101.
[2] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[3] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[4] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[5] Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model
Cancan Shao(邵灿灿) and Houbing Huang(黄厚兵). Chin. Phys. B, 2025, 34(2): 027701.
[6] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[7] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[8] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[9] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[10] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[11] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[12] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[13] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[14] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[15] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
No Suggested Reading articles found!