Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054207    DOI: 10.1088/1674-1056/adb9cc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation

Chun-Xiao Liu(刘春晓)1,†, Zi-Hao Wang(王子昊)1, Bei-Er Guo(郭贝尔)1, Rui Yuan(袁睿)1, Yi-Fan Wang(王逸凡)1, Yu-Hang Zhou(周雨航)1, Jia-Bin Sun(孙家彬)1, Liao-Lin Zhang(张料林)2, and Hai-Tao Guo(郭海涛)3
1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an 710119, China
Abstract  Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting. In the work, the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal (TGG) via the proton implantation with the energy of 4×101 MeV and the fluence of 6×108 ions/μm2. Subsequently, a femtosecond laser with a central wavelength of 800 nm and a power of 3 mW was used to ablate the surface of the planar waveguide, forming the ridge optical waveguide. The dark-mode curve of the planar waveguide was measured by a prism coupling technique. The top-view morphology of the ridge waveguide was observed via a Nikon microscope. The mode field distributions of the planar and ridge waveguides were obtained by an end-face coupling system, and the propagation losses of the two waveguides were measured to be 2.26 dB/cm and 2.58 dB/cm, respectively. The Verdet constants were measured to be 72.7/Tcm for the TGG substrate and 60.7/Tcm for the ridge waveguide. The TGG waveguides have a potential in the fabrication of magneto-optical waveguide devices.
Keywords:  optical waveguide      ion implantation      terbium gallium garnet crystal (TGG)      magneto-optical effect      femtosecond laser ablation  
Received:  27 December 2024      Revised:  13 February 2025      Accepted manuscript online:  25 February 2025
PACS:  42.79.Gn (Optical waveguides and couplers)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the Postgraduate Research and Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1133), the National Natural Science Foundation of China (Grant No. 11405041), the Key Research and Development Program of Jiangxi Province, China (Grant No. 20223BBE51020), and the Opening Fund of Key Laboratory of Rare Earths (Chinese Academy of Sciences).
Corresponding Authors:  Chun-Xiao Liu     E-mail:  chunxiaoliu@njupt.edu.cn

Cite this article: 

Chun-Xiao Liu(刘春晓), Zi-Hao Wang(王子昊), Bei-Er Guo(郭贝尔), Rui Yuan(袁睿), Yi-Fan Wang(王逸凡), Yu-Hang Zhou(周雨航), Jia-Bin Sun(孙家彬), Liao-Lin Zhang(张料林), and Hai-Tao Guo(郭海涛) Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation 2025 Chin. Phys. B 34 054207

[1] Carothers K J, Norwood R A and Pyun J 2022 Chem. Mater. 34 2531
[2] Pintus P, Ranzani L, Pinna S, Huang D, Gustafsson M V, Karinou F, Casula G A, Shoji Y, Takamura Y, Mizumoto T, Soltani M and Bowers J E 2022 Nat. Electron. 5 604
[3] Shoji Y and Mizumoto T 2018 Opt. Mater. Express 8 2387
[4] Chen T B, Yu Y X, Li L C, Zhu J, Cong M H and Song J Y 2021 J. Cryst. Growth 562 126090
[5] Wu Z, Zhang Z H, Zhang Z, Zhou S Y, Su L B andWu A H 2024 Chin. J. Quantum Electron. 41 194 (in Chinese)
[6] Jin WZ, Ding J X, Guo L, Gu Q, Li C, Su L B, Wu A H and Zeng F M 2018 J. Cryst. Growth 484 17
[7] Snetkov I and Li J 2022 Magnetochemistry 8 168
[8] Chen S, Zhuo M P, Wang X D, Wei G Q and Liao L S 2021 PhotoniX 2 1
[9] Fan Y L, Yang X B, Lian H D, Chen R K, Zhu P B, Deng D M, Liu H Z and Wei Z C 2024 Chin. Phys. B 33 034201
[10] Zhao D, Fan F, Li T F, Tan Z Y, Cheng J R and Chang S J 2022 Sci. China Inf. Sci. 65 169401
[11] Okamoto K 2021 Fundamentals of optical waveguides (Amsterdam: Elsevier) p. 15
[12] Lu Y, Yin H Y, Chen B K, Zhang L L, Fu L L, Yue Q Y, Zheng R L, Lin S B and Liu C X 2022 Mod. Phys. Lett. B 36 2150581
[13] Bazzan M and Sada C 2015 Appl. Phys. Rev. 2 040603
[14] Minemura D, Kou R, Sutoh Y, Murai T, Yamada K and Shoji Y 2023 Opt. Express 31 27821
[15] Huang L Q, Wu H Y, Cai G X, Wu S X, Li D R, Jiang T, Qiao B Y, Jiang C Z and Ren F 2024 ACS Nano 18 2578
[16] Pan H, Shi W H, Zhang Z X, Chen H Y, Fu L L, Zhang L L, Lin S B and Liu C X 2023 J. Mater. Sci.: Mater. Electron. 34 1091
[17] You J L, Wang Y S, Wang T, Zhang L L, Fu L L, Yue Q Y, Wang X F, Zheng R L and Liu C X 2022 Chin. Phys. B 31 114203
[18] Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
[19] Chen F, Amekura H and Jia Y C 2020 Ion irradiation of dielectrics for photonic applications (Singapore: Springer-Nature) pp. 7-10
[20] Zhao J, Ni X, Huo Y Y, Sun W, Zhang L L and Liu C X 2024 Phys. Scr. 99 055560
[21] He S, Zhang Z Y, Liu H L, Akhmadaliev S, Zhou S Q, Wang X P and Wu P F 2019 Appl. Phys. Express 12 076502
[22] Xu H, Li Z Q, Pang C, Li R, Li G L, Akhmadaliev Sh, Zhou S Q, Lu Q M, Jia Y C and Chen F 2022 Chin. Phys. B 31 094209
[23] Chen F and Aldana J R V de 2014 Laser Photon. Rev. 8 251
[24] Zhang J, Zhang Y, Xu J, Lin S B and Liu C X 2020 Vacuum 172 109093
[25] Peyton R, Guarepi V, Videla F and Torchia G A 2020 Opt. Laser Technol. 125 106059
[26] Wang Y, Shen X L, Zhu Q F and Liu C X 2018 Opt. Mater. Express 8 3288
[27] Ziegler J F 2023 SRIM—The Stopping and Range of Ions in Matter http://www.srim.org
[28] Chandler P J and Lama F L 1986 Opt. Acta 33 127
[29] Rsoft Design Group 2023 Computer software BeamPROP version 8.0 http://www.rsoftdesign.com
[30] Liu C X, Sun W, Zhang J Y, Fu L L, Yun L and Zhang L L 2024 Opt. Eng. 63 017102
[31] Liu C X, Zhao J, Hua Z Y, Yang Y C, Sun W, Zhang L L and Wang X F 2023 Results Phys. 54 107103
[32] Zhao D, Fan F, Xue Q,Wang H, Ji Y Y, Yang Q H,Wen Q Y and Chang S J 2024 Adv. Funct. Mater. 34 2404881
[33] Zhao D, Fan F, Tan Z Y, Wang H and Chang S J 2023 Laser Photon. Rev. 17 2200509
[34] Tan Z Y, Fan F, Zhao D, Wang H, Li S S, Guan S N, Cheng J R, Ji Y Y and Chang S J 2024 Laser Photon. Rev. 18 2301008
[35] Zhao D, Fan F, Liu J Y, Tan Z Y, Wang H, Yang Q H, Wen Q Y and Chang S J 2023 Optica 10 1295
[1] Experimental demonstration of silicon nitride waveguide gratings with excellent efficiency and divergence angle
Zhaozhen Chen(陈兆震), Wenling Li(李文玲), Qian Wang(王乾), Enfeng Liu(刘恩峰), Xinqun Zhang(张新群), Jingwei Liu(刘敬伟), and Zhengsheng Han(韩郑生). Chin. Phys. B, 2025, 34(5): 054206.
[2] Modulation of Bessel-like vector vortex beam using the resonant magneto-optical effect in rubidium vapor
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2025, 34(2): 024202.
[3] Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter
Jin-Song Huang(黄劲松), Jing-Lan Hu(胡菁兰), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(6): 064202.
[4] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[5] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[6] Compact TE-pass polarizer based on lithium-niobate-on-insulator assisted by indium tin oxide and silicon nitride
Jia-Min Liu(刘家敏) and De-Long Zhang(张德龙). Chin. Phys. B, 2023, 32(6): 064208.
[7] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[8] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[9] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[10] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[11] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[12] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[13] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[14] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[15] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
No Suggested Reading articles found!