Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊)†
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract Amorphous InGaZnO (IGZO) is a potential candidate for integrated circuits based on thin-film transistors (TFTs) owing to its low-temperature processability and high mobility. Amorphous InGaMgO/InGaZnO (IGMO/IGZO) heterojunction was deposited and TFTs based on IGMO/IGZO heterojunction were fabricated in this report. The energy band at the IGMO/IGZO heterojunction was characterized, and the potential well at the interface of IGZO is critical to the enhanced ultraviolet detection of the IGMO/IGZO heterojunction. Furthermore, the TFTs based on IGMO/IGZO heterojunction exhibited a high responsivity of 3.8 A/W and a large detectivity of 5.2 Jones under 350-nm ultraviolet illumination, which will also benefit for fabrication of monolithic ultraviolet sensing chip.
(Absorption and reflection spectra: visible and ultraviolet)
Fund: Project supported by the Regional Innovation and Development Joint Fund of the National Nature Science Foundation of China (Grant No. U21A2071).
Corresponding Authors:
Xingzhao Liu
E-mail: xzliu@uestc.edu.cn
Cite this article:
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊) Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance 2025 Chin. Phys. B 34 057104
[1] Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q and Long Y W 2015 Phys. Rev. Lett. 115 087601 [2] Zhu L Y, Ou L X, Mao L W, Wu X Y, Liu Y P and Lu H L 2023 Nano-Micro Lett. 15 89 [3] Wang W H, Li K, Lan J, Shen M, Wang Z R, Feng X W, Yu H Y, Chen K, Li J M, Zhou F C, Lin L Y, Zhang P P and Li Y D 2023 Nat. Commun. 14 6079 [4] Wang Z W, Nayak P K, Carraveo J A and Alshareef H N 2016 Adv. Mater. 28 3831 [5] Sunarso J, Hashim S S, Zhu N and Zhou W 2017 Prog. Energ. Combust. 61 57 [6] Ahuja T, Brighu U and Saxena K 2023 J.Water Process Eng. 53 103759 [7] Chen W T and Zan H W 2012 IEEE Electron Dev. Lett. 33 77 [8] Tak Y J, Kim D J, Kim W, Lee J H, Kim S J, Kim J H and Kim H J 2018 ACS Appl. Mater. Interfaces 10 12854 [9] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269 [10] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [11] Li Y, Zhu L, Chen C S, Zhu Y, Wan C J and Wan Q 2022 Chin. Phys. Lett. 39 228501 [12] Yoo H, Kim W, Kang B H, Kim H T, Park J W, Choi D H, Kim T S, Lim J H and Kim H J 2020 ACS Appl. Mater. Interfaces 12 10673 [13] Hu Q L, Gu C R, Li Q J, Zhu S W, Liu S Y, Li Y, Zhang L N, Huang R and Wu Y Q 2023 Adv. Mater. 35 2210554 [14] Breemen A J, Simon M, Tousignant O, Shanmugam S, Steen J, Akkerman H B, Kronemeijer A, RuettenW, Raaijmakers R, Alving L, Jacobs J, Malinowski P E, Roose F D and Gelink G H 2020 Npj Flexible Electron 4 22 [15] Yang T H, Chen T Y, Wu N T, Chen Y T and Huang J J 2017 IEEE Trans. Electron Dev. 64 1294 [16] Yu Y N, Lv N N, Zhang D G, Wei Y R and Wang M X 2021 IEEE Electron Dev. Lett. 42 1480 [17] Song S, Liang H L, Huo W X, Zhang G, Zhang Y H, Wang J W and Mei Z X 2024 Chin. Phys. Lett. 41 068501 [18] Zhang M N, Shao Y, Wang X L, Wu X H, Liu W J and Ding S J 2020 Chin. Phys. B 29 078503 [19] Hao Y, Ma X H, Mi M H and Yang L A 2021 IEEE Microw. Mag. 22 34 [20] Ohtomo A and Hwang H Y 2004 Nature 427 423 [21] Li L, Richter C, Paetel S, Kopp T, Mannhart J and Ashoori R C 2011 Science 332 825 [22] Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H and Kawasaki M 2007 Science 315 1388 [23] Murat A and Medvedeva J E 2012 Phys. Rev. B 85 155101 [24] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203 [25] Kan S, Takemote S, Kaneko K, Takahashi I, Sugimoto M, Shinohe T and Fujita S 2018 Appl. Phys. Lett. 113 212104 [26] Owen M H S, Bhuiyan M A, Zhou Q, Zhang Z, Pan J S and Yeo Y 2014 Appl. Phys. Lett. 104 091605 [27] Lee M, Jo J, Kim Y J, Choi S, Kwon S M, Jeon S P, Facchetti A, Kim Y H and Park S K 2018 Adv. Mater. 30 1804120 [28] Ji X Q, Yuan Y Z, Yin X M, Yan S Q, Xin Q and Song A M 2022 IEEE Trans. Electron. Dev. 69 6783 [29] Choi H, Seo S, Lee J H, Hong S H, Song J, Kim S, Yim S Y, Lee K, Park S J and Lee S 2018 J. Mater. Chem. C 6 6014 [30] Hwang J D, Yang C C and Chu C M 2017 ACS Appl. Mater. Interfaces 9 23904 [31] Lee J, Kim H, Pi J, Kang S, Kwon K and Cho S H 2020 Appl. Phys. Lett. 117 111103 [32] Ahn J, Ma J, Lee D, Lin Q, Park Y, Lee O, Sim S, Lee K, Yoo G and Heo J 2021 ACS Photon. 8 557 [33] Yu H, Liu X Y, Yan L Z, Zou T Y, Yang H, Liu C, Zhang S D and Zhou H 2019 Semicond. Sci. Tech. 34 125013 [34] Ji X Q, Yin X M, Ding Z J, Yan S Q, Zhou X Y, Zhang J W, Xin Q and Song A M 2023 IEEE Electron. Dev. Lett. 44 1512 [35] Ferhati H and Djeffal F 2021 Sensor. Actuator A Phys. 318 112523
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.