Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057104    DOI: 10.1088/1674-1056/adb8b6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance

Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊)†
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  Amorphous InGaZnO (IGZO) is a potential candidate for integrated circuits based on thin-film transistors (TFTs) owing to its low-temperature processability and high mobility. Amorphous InGaMgO/InGaZnO (IGMO/IGZO) heterojunction was deposited and TFTs based on IGMO/IGZO heterojunction were fabricated in this report. The energy band at the IGMO/IGZO heterojunction was characterized, and the potential well at the interface of IGZO is critical to the enhanced ultraviolet detection of the IGMO/IGZO heterojunction. Furthermore, the TFTs based on IGMO/IGZO heterojunction exhibited a high responsivity of 3.8×103 A/W and a large detectivity of 5.2×1014 Jones under 350-nm ultraviolet illumination, which will also benefit for fabrication of monolithic ultraviolet sensing chip.
Keywords:  InGaZnO (IGZO)      heterojunction      transistors      ultraviolet detection  
Received:  16 December 2024      Revised:  19 February 2025      Accepted manuscript online:  21 February 2025
PACS:  71.20.Nr (Semiconductor compounds)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.40.-c (Electronic transport in interface structures)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
Fund: Project supported by the Regional Innovation and Development Joint Fund of the National Nature Science Foundation of China (Grant No. U21A2071).
Corresponding Authors:  Xingzhao Liu     E-mail:  xzliu@uestc.edu.cn

Cite this article: 

Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊) Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance 2025 Chin. Phys. B 34 057104

[1] Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q and Long Y W 2015 Phys. Rev. Lett. 115 087601
[2] Zhu L Y, Ou L X, Mao L W, Wu X Y, Liu Y P and Lu H L 2023 Nano-Micro Lett. 15 89
[3] Wang W H, Li K, Lan J, Shen M, Wang Z R, Feng X W, Yu H Y, Chen K, Li J M, Zhou F C, Lin L Y, Zhang P P and Li Y D 2023 Nat. Commun. 14 6079
[4] Wang Z W, Nayak P K, Carraveo J A and Alshareef H N 2016 Adv. Mater. 28 3831
[5] Sunarso J, Hashim S S, Zhu N and Zhou W 2017 Prog. Energ. Combust. 61 57
[6] Ahuja T, Brighu U and Saxena K 2023 J.Water Process Eng. 53 103759
[7] Chen W T and Zan H W 2012 IEEE Electron Dev. Lett. 33 77
[8] Tak Y J, Kim D J, Kim W, Lee J H, Kim S J, Kim J H and Kim H J 2018 ACS Appl. Mater. Interfaces 10 12854
[9] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
[10] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[11] Li Y, Zhu L, Chen C S, Zhu Y, Wan C J and Wan Q 2022 Chin. Phys. Lett. 39 228501
[12] Yoo H, Kim W, Kang B H, Kim H T, Park J W, Choi D H, Kim T S, Lim J H and Kim H J 2020 ACS Appl. Mater. Interfaces 12 10673
[13] Hu Q L, Gu C R, Li Q J, Zhu S W, Liu S Y, Li Y, Zhang L N, Huang R and Wu Y Q 2023 Adv. Mater. 35 2210554
[14] Breemen A J, Simon M, Tousignant O, Shanmugam S, Steen J, Akkerman H B, Kronemeijer A, RuettenW, Raaijmakers R, Alving L, Jacobs J, Malinowski P E, Roose F D and Gelink G H 2020 Npj Flexible Electron 4 22
[15] Yang T H, Chen T Y, Wu N T, Chen Y T and Huang J J 2017 IEEE Trans. Electron Dev. 64 1294
[16] Yu Y N, Lv N N, Zhang D G, Wei Y R and Wang M X 2021 IEEE Electron Dev. Lett. 42 1480
[17] Song S, Liang H L, Huo W X, Zhang G, Zhang Y H, Wang J W and Mei Z X 2024 Chin. Phys. Lett. 41 068501
[18] Zhang M N, Shao Y, Wang X L, Wu X H, Liu W J and Ding S J 2020 Chin. Phys. B 29 078503
[19] Hao Y, Ma X H, Mi M H and Yang L A 2021 IEEE Microw. Mag. 22 34
[20] Ohtomo A and Hwang H Y 2004 Nature 427 423
[21] Li L, Richter C, Paetel S, Kopp T, Mannhart J and Ashoori R C 2011 Science 332 825
[22] Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H and Kawasaki M 2007 Science 315 1388
[23] Murat A and Medvedeva J E 2012 Phys. Rev. B 85 155101
[24] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
[25] Kan S, Takemote S, Kaneko K, Takahashi I, Sugimoto M, Shinohe T and Fujita S 2018 Appl. Phys. Lett. 113 212104
[26] Owen M H S, Bhuiyan M A, Zhou Q, Zhang Z, Pan J S and Yeo Y 2014 Appl. Phys. Lett. 104 091605
[27] Lee M, Jo J, Kim Y J, Choi S, Kwon S M, Jeon S P, Facchetti A, Kim Y H and Park S K 2018 Adv. Mater. 30 1804120
[28] Ji X Q, Yuan Y Z, Yin X M, Yan S Q, Xin Q and Song A M 2022 IEEE Trans. Electron. Dev. 69 6783
[29] Choi H, Seo S, Lee J H, Hong S H, Song J, Kim S, Yim S Y, Lee K, Park S J and Lee S 2018 J. Mater. Chem. C 6 6014
[30] Hwang J D, Yang C C and Chu C M 2017 ACS Appl. Mater. Interfaces 9 23904
[31] Lee J, Kim H, Pi J, Kang S, Kwon K and Cho S H 2020 Appl. Phys. Lett. 117 111103
[32] Ahn J, Ma J, Lee D, Lin Q, Park Y, Lee O, Sim S, Lee K, Yoo G and Heo J 2021 ACS Photon. 8 557
[33] Yu H, Liu X Y, Yan L Z, Zou T Y, Yang H, Liu C, Zhang S D and Zhou H 2019 Semicond. Sci. Tech. 34 125013
[34] Ji X Q, Yin X M, Ding Z J, Yan S Q, Zhou X Y, Zhang J W, Xin Q and Song A M 2023 IEEE Electron. Dev. Lett. 44 1512
[35] Ferhati H and Djeffal F 2021 Sensor. Actuator A Phys. 318 112523
[1] Enhanced electronic and photoelectrical properties of two-dimensional Zn-doped SnS2
Xichen Chuai(揣喜臣), Peng Yin(殷鹏), Jiawei Wang(王嘉玮), Guanhua Yang(杨冠华), Congyan Lu(陆丛研), Di Geng(耿玓), Ling Li(李泠), Can Liu(刘灿), Zhongming Wei(魏钟鸣), and Nianduan Lu(卢年端). Chin. Phys. B, 2025, 34(5): 056101.
[2] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[3] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[4] Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures
Zhiteng Li(李志腾), Yian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓). Chin. Phys. B, 2025, 34(2): 027201.
[5] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
[6] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[7] Magnetic proximity effect in the two-dimensional ε-Fe2O3/NbSe2 heterojunction
Bingyu Che(车冰玉), Guojing Hu(胡国静), Chao Zhu(朱超), Hui Guo(郭辉), Senhao Lv(吕森浩), Xuanye Liu(刘轩冶), Kang Wu(吴康), Zhen Zhao(赵振), Lulu Pan(潘禄禄), Ke Zhu(祝轲), Qi Qi(齐琦), Yechao Han(韩烨超), Xiao Lin(林晓), Zi'an Li(李子安), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Zheng Liu(刘政), Jiadong Zhou(周家东), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(2): 027502.
[8] Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2024, 33(1): 016104.
[9] Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
Weijie Wei(魏伟杰), Weifeng Lü(吕伟锋), Ying Han(韩颖), Caiyun Zhang(张彩云), and Dengke Chen(谌登科). Chin. Phys. B, 2023, 32(9): 097301.
[10] NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌). Chin. Phys. B, 2023, 32(9): 098502.
[11] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[12] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[13] High on-state current p-type tunnel effect transistor based on doping modulation
Jiale Sun(孙佳乐), Yuming Zhang(张玉明), Hongliang Lu(吕红亮), Zhijun Lyu(吕智军),Yi Zhu(朱翊), Yuche Pan(潘禹澈), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(7): 078504.
[14] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[15] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
No Suggested Reading articles found!