Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057201    DOI: 10.1088/1674-1056/adb26b
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Magnon-magnon coupling in noncollinear synthetic antiferromagnets

Tengfei Zhang(张腾飞)1, Quwen Wang(王曲文)1, Min Chen(陈敏)2, Jie Dong(董洁)1, Qian Zhao(赵乾)1, Zimu Li(李子木)1, Qingfang Liu(刘青芳)1, Jianbo Wang(王建波)1, and Jinwu Wei(魏晋武)1,†
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 Southwest Institute of Applied Magnetics, Mianyang 621000, China
Abstract  We report a theoretical analysis of magnon-magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction, which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy, respectively. Based on the Landau-Lifshitz equation, the spin wave dispersion is derived, and then the frequency gap is observed due to the magnon-magnon coupling effect induced by symmetry breaking. The influence of saturation magnetization, exchange coupling interaction, perpendicular magnetic anisotropy, and wave vector on the coupling strength is studied in detail. We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength. By selecting the appropriate magnetic materials, the ultra-strong coupling regime can be achieved. The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.
Keywords:  magnon-magnon coupling      noncollinear magnetic structure      coupling strength  
Received:  10 December 2024      Revised:  16 January 2025      Accepted manuscript online:  05 February 2025
PACS:  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
  75.50.Ee (Antiferromagnetics)  
  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52201290), the Natural Science Foundation of Gansu Province (Grant No. 24JRRA402), and the 9th Research Institute of China Electronics Technology Group Corporation’s open projects (Grant No. 2024SK-001-4).
Corresponding Authors:  Jinwu Wei     E-mail:  weijw@lzu.edu.cn

Cite this article: 

Tengfei Zhang(张腾飞), Quwen Wang(王曲文), Min Chen(陈敏), Jie Dong(董洁), Qian Zhao(赵乾), Zimu Li(李子木), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Jinwu Wei(魏晋武) Magnon-magnon coupling in noncollinear synthetic antiferromagnets 2025 Chin. Phys. B 34 057201

[1] Lenk B, Ulrichs H, Garbs F and Münzenberg M 2011 Phys. Rep. 507 107
[2] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[3] Dyson F J 1956 Phys. Rev. 102 1217
[4] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[5] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002
[6] F Bloch 1930 Z. Physik 61 206
[7] Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257202
[8] Lee K S, Han D S and Kim S K 2009 Phys. Rev. Lett. 102 127202
[9] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505
[10] Kostylev M P, Serga A A, Schneider T, Leven B and Hillebrands B 2005 Appl. Phys. Lett. 87 15350
[11] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance- Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G EWand Blanter Y M 2022 Phys. Rep. 979 1
[12] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405
[13] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003
[14] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[15] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101
[16] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603
[17] Liensberger L, Kamra A, Maier-Flaig H, Geprägs S, Erb A, Goennenwein S T B, Gross R, BelzigW, Huebl H and Weiler M 2019 Phys. Rev. Lett. 123 117204
[18] Chen J, Yu T, Liu C, Liu T, Madami M, Shen K, Zhang J, Tu S, Alam M S, Xia K, Wu M, Gubbiotti G, Blanter Y M, Bauer G W and Yu H 2019 Phys. Rev. B 100 104427
[19] Chen J, Liu C, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M and Yu H 2018 Phys. Rev. Lett. 120 217202
[20] Adhikari K, Choudhury S, Barman S, Otani Y and Barman A 2021 Nanotechnology 32 395706
[21] Xiong Y, Li Y, Hammami M, Bidthanapally R, Sklenar J, Zhang X, Qu H, Srinivasan G, Pearson J, Hoffmann A, Novosad V and Zhang W 2020 Sci. Rep. 10 12548
[22] MacNeill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P and Liu L 2019 Phys. Rev. Lett. 123 047204
[23] Li M, Lu J and He W 2021 Phys. Rev. B 103 064429
[24] Wiese N, Dimopoulos T, Rührig M, Wecker J, Brückl H and Reiss G 2004 Appl. Phys. Lett. 85 2020
[25] Waring H J, Li Y, Moutafis C, Vera-Marun I J and Thomson T 2021 Phys. Rev. B 104 014419
[26] Belmeguenai M, Martin T, Woltersdorf G, Bayreuther G, Baltz V, Suszka A K and Hickey B J 2008 J. Phys.: Condens. Matter 20 345206
[27] Martin T, Belmeguenai M, Maier M, Perzlmaier K and Bayreuther G 2007 J. Appl. Phys. 101 09C101
[28] Zhang T, Li C, Zhao Q, Li Z, Wang Q, Yu G, Han X, Chai G, Zhang S, Liu Q, Wang J, Wei J 2024 Phys. Rev. B 109 054406
[29] Sud A, Yamamoto K, Suzuki K Z, Mizukami S and Kurebayashi H 2023 Phys. Rev. B 108 104407
[30] Dai C and Ma F 2021 Appl. Phys. Lett. 118 112405
[31] Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S and Kurebayashi H 2020 Phys. Rev. B 102 100403
[32] Hu B and He W 2023 J. Magn. Magn. Mater. 565 170283
[33] Lu S, Meng D, Khan A,Wang Z, Chen S and Liang S 2024 Chin. Phys. B 33 107501
[34] Wang X R 2022 Chin. Phys. Lett. 39 027301
[35] Zhu M, Dong J, Li X, Zheng F, Zhou Y, Wu K and Zhang J 2024 Chin. Phys. Lett. 41 047502
[36] Wang Y, Zhang Y, Li C, Wei J, He B, Xu H, Xia J, Luo X, Li J, Dong J, He W, Yan Zh, Yang W, Ma F, Chai G, Yan P, Wan C, Han X and Yu G 2024 Nat. Commun. 15 2077
[37] Nortemann F C, Stamps R L and Camley R E 1993 Phys. Rev. B 47 11910
[38] Stamps R L 1994 Phys. Rev. B 49 339
[39] Skarsvåg H, Kapelrud A and Brataas A 2014 Phys. Rev. B 90 094418
[40] Shiota Y, Taniguchi T, Ishibashi M, Moriyama T and Ono T 2020 Phys. Rev. Lett. 125 017203
[41] Mendisch S, Žiemys G, Ahrens V, Papp Á and Becherer M 2019 J. Magn. Magn. Mater. 485 345
[42] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[43] Frisk Kockum A, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
[44] Ishibashi M, Shiota Y, Li T, Funada S, Moriyama T and Ono T 2020 Sci. Adv. 6 eaaz6931
[1] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[2] Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study
Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松). Chin. Phys. B, 2020, 29(5): 058701.
[3] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[4] Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits
Zhi Zhou(周知), Dong-Sheng Yu(于东升), Xiao-Yuan Wang(王晓媛). Chin. Phys. B, 2017, 26(12): 120701.
[5] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[6] Coupling strength effect on shot noise in boron devices
Li Gui-Qin (李桂琴), Guo Yong (郭永). Chin. Phys. B, 2013, 22(11): 117304.
[7] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) . Chin. Phys. B, 2012, 21(2): 020501.
[8] Collective behaviour of climate indices in the North Pacific air–sea system and its potential relationships with decadal climate changes
Wang Xiao-Juan(王晓娟), Zhi Rong(支蓉), He Wen-Ping(何文平), and Gong Zhi-Qiang(龚志强) . Chin. Phys. B, 2012, 21(2): 029201.
[9] Entanglement in a generalized Jaynes--Cummings model
Zhang Guo-Feng(张国锋) and Liu Jia(刘佳). Chin. Phys. B, 2007, 16(12): 3595-3600.
No Suggested Reading articles found!