Magnon-magnon coupling in noncollinear synthetic antiferromagnets
Tengfei Zhang(张腾飞)1, Quwen Wang(王曲文)1, Min Chen(陈敏)2, Jie Dong(董洁)1, Qian Zhao(赵乾)1, Zimu Li(李子木)1, Qingfang Liu(刘青芳)1, Jianbo Wang(王建波)1, and Jinwu Wei(魏晋武)1,†
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 Southwest Institute of Applied Magnetics, Mianyang 621000, China
Abstract We report a theoretical analysis of magnon-magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction, which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy, respectively. Based on the Landau-Lifshitz equation, the spin wave dispersion is derived, and then the frequency gap is observed due to the magnon-magnon coupling effect induced by symmetry breaking. The influence of saturation magnetization, exchange coupling interaction, perpendicular magnetic anisotropy, and wave vector on the coupling strength is studied in detail. We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength. By selecting the appropriate magnetic materials, the ultra-strong coupling regime can be achieved. The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.
(Scattering by phonons, magnons, and other nonlocalized excitations)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52201290), the Natural Science Foundation of Gansu Province (Grant No. 24JRRA402), and the 9th Research Institute of China Electronics Technology Group Corporation’s open projects (Grant No. 2024SK-001-4).
Tengfei Zhang(张腾飞), Quwen Wang(王曲文), Min Chen(陈敏), Jie Dong(董洁), Qian Zhao(赵乾), Zimu Li(李子木), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Jinwu Wei(魏晋武) Magnon-magnon coupling in noncollinear synthetic antiferromagnets 2025 Chin. Phys. B 34 057201
[1] Lenk B, Ulrichs H, Garbs F and Münzenberg M 2011 Phys. Rep. 507 107 [2] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098 [3] Dyson F J 1956 Phys. Rev. 102 1217 [4] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001 [5] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002 [6] F Bloch 1930 Z. Physik 61 206 [7] Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257202 [8] Lee K S, Han D S and Kim S K 2009 Phys. Rev. Lett. 102 127202 [9] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505 [10] Kostylev M P, Serga A A, Schneider T, Leven B and Hillebrands B 2005 Appl. Phys. Lett. 87 15350 [11] Rameshti B Z, Kusminskiy S V, Haigh J A, Usami K, Lachance- Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G EWand Blanter Y M 2022 Phys. Rep. 979 1 [12] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405 [13] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003 [14] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002 [15] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [16] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603 [17] Liensberger L, Kamra A, Maier-Flaig H, Geprägs S, Erb A, Goennenwein S T B, Gross R, BelzigW, Huebl H and Weiler M 2019 Phys. Rev. Lett. 123 117204 [18] Chen J, Yu T, Liu C, Liu T, Madami M, Shen K, Zhang J, Tu S, Alam M S, Xia K, Wu M, Gubbiotti G, Blanter Y M, Bauer G W and Yu H 2019 Phys. Rev. B 100 104427 [19] Chen J, Liu C, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M and Yu H 2018 Phys. Rev. Lett. 120 217202 [20] Adhikari K, Choudhury S, Barman S, Otani Y and Barman A 2021 Nanotechnology 32 395706 [21] Xiong Y, Li Y, Hammami M, Bidthanapally R, Sklenar J, Zhang X, Qu H, Srinivasan G, Pearson J, Hoffmann A, Novosad V and Zhang W 2020 Sci. Rep. 10 12548 [22] MacNeill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P and Liu L 2019 Phys. Rev. Lett. 123 047204 [23] Li M, Lu J and He W 2021 Phys. Rev. B 103 064429 [24] Wiese N, Dimopoulos T, Rührig M, Wecker J, Brückl H and Reiss G 2004 Appl. Phys. Lett. 85 2020 [25] Waring H J, Li Y, Moutafis C, Vera-Marun I J and Thomson T 2021 Phys. Rev. B 104 014419 [26] Belmeguenai M, Martin T, Woltersdorf G, Bayreuther G, Baltz V, Suszka A K and Hickey B J 2008 J. Phys.: Condens. Matter 20 345206 [27] Martin T, Belmeguenai M, Maier M, Perzlmaier K and Bayreuther G 2007 J. Appl. Phys. 101 09C101 [28] Zhang T, Li C, Zhao Q, Li Z, Wang Q, Yu G, Han X, Chai G, Zhang S, Liu Q, Wang J, Wei J 2024 Phys. Rev. B 109 054406 [29] Sud A, Yamamoto K, Suzuki K Z, Mizukami S and Kurebayashi H 2023 Phys. Rev. B 108 104407 [30] Dai C and Ma F 2021 Appl. Phys. Lett. 118 112405 [31] Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S and Kurebayashi H 2020 Phys. Rev. B 102 100403 [32] Hu B and He W 2023 J. Magn. Magn. Mater. 565 170283 [33] Lu S, Meng D, Khan A,Wang Z, Chen S and Liang S 2024 Chin. Phys. B 33 107501 [34] Wang X R 2022 Chin. Phys. Lett. 39 027301 [35] Zhu M, Dong J, Li X, Zheng F, Zhou Y, Wu K and Zhang J 2024 Chin. Phys. Lett. 41 047502 [36] Wang Y, Zhang Y, Li C, Wei J, He B, Xu H, Xia J, Luo X, Li J, Dong J, He W, Yan Zh, Yang W, Ma F, Chai G, Yan P, Wan C, Han X and Yu G 2024 Nat. Commun. 15 2077 [37] Nortemann F C, Stamps R L and Camley R E 1993 Phys. Rev. B 47 11910 [38] Stamps R L 1994 Phys. Rev. B 49 339 [39] Skarsvåg H, Kapelrud A and Brataas A 2014 Phys. Rev. B 90 094418 [40] Shiota Y, Taniguchi T, Ishibashi M, Moriyama T and Ono T 2020 Phys. Rev. Lett. 125 017203 [41] Mendisch S, Žiemys G, Ahrens V, Papp Á and Becherer M 2019 J. Magn. Magn. Mater. 485 345 [42] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 [43] Frisk Kockum A, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 [44] Ishibashi M, Shiota Y, Li T, Funada S, Moriyama T and Ono T 2020 Sci. Adv. 6 eaaz6931
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.