Pan Zhang(张攀)1, Shihai Fu(付世海)1, Chunying Pu(濮春英)1, Xin Tang(唐鑫)2, and Dawei Zhou(周大伟)1,†
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; 2 College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
Abstract TiO is a well-known photocatalyst with a band gap of 3.2 eV, yet its ability to absorb light is limited to the short wavelengths of ultraviolet light. To achieve a more effective photocatalytic material, we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations. Three stable low-energy structures with space groups of 2, 31 and 2 are identified. Among these structures, the Janus 31 phase is a direct bandgap semiconductor, while the 2 and 2 phases are indirect bandgap semiconductors. Utilizing the accurate hybrid density functional HSE06 method, the band gaps of the three structures are calculated to be 2.34 eV (2), 2.24 eV (31) and 3.22 eV (2. Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges. Moreover, the photocatalytic calculations also indicate that both 2 and 31 TiOS can provide a strong driving force for converting HO to H and O in an acidic environment with pH 0. The structural stabilities, mechanical properties, electronic structures and hydrogen evolution reaction activities are also discussed in detail. Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52272219 and U1904612) and the Natural Science Foundation of Henan Province (Grant No. 242300421191).
Pan Zhang(张攀), Shihai Fu(付世海), Chunying Pu(濮春英), Xin Tang(唐鑫), and Dawei Zhou(周大伟) Predicted stable two-dimensional semiconductor TiOS materials with promising photocatalytic properties: First-principles calculations 2025 Chin. Phys. B 34 057103
[1] Ma Y, Wang X, Jia Y, Chen X, Han H and Li C 2014 Chem. Rev. 114 9987 [2] A G F 1959 Rev. Mod. Phys. 31 646 [3] Diebold U 2003 Surf. Sci. Rep. 48 53 [4] Diasanayake M, Senadeera G, Sarangika H, Ekanayake P, Thotawattage C, Divarathne H and Kumari J 2016 Mater. Today: Proc. 3 S40 [5] Zakir O, Ait-Karra A, Idouhli R, Khadiri M, Dikici B, Aityoub A, Abouelfida A and Outzourhit A 2023 J. Solid State Electr. 27 2289 [6] Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi M M, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A and Pandey S 2023 J. Drug Deliv. Sci. Tec. 82 104370 [7] Ge S, Sang D, Zou L, Yao Y, Zhou C, Fu H, Xi H, Fan J, Meng L and Wang C 2023 Nanomaterials 13 1141 [8] Fujishima A and Honda K 1972 Nature 238 37 [9] Lacerda A M, Larrosa I and Dunn S 2015 Nanoscale 7 12331 [10] Wang J, Guo R T, Bi Z X, Chen X, Hu X and PanWG 2022 Nanoscale 14 11512 [11] Singh R and Dutta S 2018 Fuel Cells 220 607 [12] Baig U, Uddin M K and Sajid M 2020 Mater. Today Commun. 25 101534 [13] Prakash J, Kumar A, Dai H, Janegitz B C, Krishnan V, Swart H C and Sun S 2021 Mater. Today Sustain. 13 100066 [14] Li Y, Shen Q, Guan R, Xue J, Liu X, Jia H, Xu B and Wu Y 2020 J. Mater. Chem. C 8 1025 [15] Ji J, Liu B, Huang H, Wang X, Yan L, Qu S, Liu X, Jiang H, Duan M and Li Y 2021 J. Mater. Chem. C 9 7057 [16] Wang J, Fu K, Zhang X, Yin Q, Wei G and Su Z 2021 J. Mater. Chem. C 9 8466 [17] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M and Bahnemann D W 2014 Chem. Rev. 114 9919 [18] Zhang J, Wu Y, Xing M, Leghari S A K and Sajjad S 2010 Energ. Environ. Sci. 3 715 [19] Etghani S A, Ansari E and Mohajerzadeh S 2019 Sci. Rep. 9 17943 [20] Zhong J, Chen F and Zhang J 2010 J. Phys. Chem. C 114 933 [21] Piątkowska A, Janus M, Szymański K and Mozia S 2021 Catalysts 11 144 [22] Umezawa N, Janotti A, Rinke P, Chikyow T and Van de Walle C G 2008 Appl. Phys. Lett. 92 041104 [23] Cui Y, Du H and Wen L 2009 Solid State Commun. 149 634 [24] Umebayashi T, Yamaki T, Itoh H and Asai K 2002 Appl. Phys. Lett. 81 454 [25] Huang Z, Gao Z, Gao S, Wang Q, Wang Z, Huang B and Dai Y 2017 Chin. J. Catal. 38 821 [26] Sharotri N and Sud D 2015 New J. Chem. 39 2217 [27] Bu X, Wang Y, Li J and Zhang C 2015 J. Alloys Compd. 628 20 [28] Lin Y H, Chou S H and Chu H 2014 J Nanopart Res. 16 2539 [29] Kovačić M, Perović K, Papac J, Tomić A, Matoh L, Žener B, Brodar T, Capan I, Surca A K and Kušić H 2020 J. Materials 13 1621 [30] Ramanathan R and Bansal V 2015 J. RSC Advances 5 1424 [31] El Nemr A, Helmy E T, Gomaa E A, Eldafrawy S and Mousa M 2019 J. Environ. Chem. Eng. 7 103385 [32] Shvadchina Y O, Cherepivskaya M, Vakulenko V, Sova A, Stolyarova I and Prikhodko R 2015 J. Water Chem. Technol. 37 283 [33] Kang I C, Zhang Q, Yin S, Sato T and Saito F 2008 Environ. Sci. Technol. 42 3622 [34] Jovanovic D, Zagorac D, Matovic B, Zarubica A and Zagorac J 2021 Acta Crystallogr. Sect. B: Struct. Sci. 77 833 [35] Xiang Y J, Gao S, Wang C, Fang H, Duan X, Zheng Y F and Zhang Y Y 2024 Chin. Phys. B 33 087101 [36] Barhoumi M, Said I, Yedukondalu N and Said M 2023 Results Phys. 48 106438 [37] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [38] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [39] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [44] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [45] Yuan J H, Song Y Q, Chen Q, Xue K H and Miao X S 2019 Appl. Surf. Sci. 469 456 [46] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [47] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C and Sutton A P 1998 Phys. Rev. B 57 1505 [48] Zhang L, Yang Z, Gong T, Pan R, Wang H, Guo Z, Zhang H and Fu X 2020 J. Mater. Chem. A 8 8813 [49] Zheng T, Lin Y C, Yu Y, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G and Geohegan D B 2021 Nano Lett. 21 931 [50] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H and Yang Y 2017 Nat. Nanotechnol. 12 744 [51] Zhou W, Chen J, Yang Z, Liu J and Ouyang F 2019 Phys. Rev. B 99 075160 [52] Peng R, Ma Y, Huang B and Dai Y 2019 J. Mater. Chem. A 7 603 [53] Li L, Yang Z X, Huang T, Wan H, Chen W Y, Zhang T, Huang G F, Hu W and Huang W Q 2024 Appl. Phys. Lett. 125 223904 [54] Frey N C, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y and Shenoy V B 2019 J. ACS Nano 13 2831 [55] AbdollahiMand TaganiMB 2022 J. Phys. Condens. Matter 34 185702 [56] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366 [57] Koo H C, Kim S B, Kim H, Park T E, Choi J W, Kim K W, Go G, Oh J H, Lee D K and Park E S 2020 Adv. Mater. 32 2002117 [58] Bihlmayer G, Rader O and Winkler R 2015 New J. Phys. 17 050202 [59] Ahmad S and Mukherjee S 2014 J. Graphene 3 52 [60] Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757 [61] Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 046804 [62] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [63] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204 [64] Nye J F 1985 Physical properties of crystals: their representation by tensors and matrices (2nd edn.) (Oxford: Clarendon Press) pp. 182- 184 [65] Peng R, Ma Y, He Z, Huang B, Kou L and Dai Y 2019 Nano Lett. 19 1227 [66] Li P, You Z, Haugstad G and Cui T 2011 Appl. Phys. Lett. 98 253105 [67] Li P 2019 Phys. Chem. Chem. Phys. 21 11150 [68] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120 [69] Xiong Z Q, Zhang P C, KangWB and FangWY 2020 Acta Phys. Sin. 69 166301 (in Chinese) [70] Chen S and Wang L W 2012 Chem. Mater. 24 3659 [71] Yang N, Zhao Y, He T, Wang K, Luo Z, Zheng H, Shen Y, Santiago A R P, Zhou T and Zhan W 2024 ACS Appl. Nano Mater. 7 9598 [72] Wu X, Zuo S, Qiu M, Li Y, Zhang Y, An P, Zhang J, Zhang H and Zhang J 2021 Chem. Eng. J. 420 127681
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.