Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057103    DOI: 10.1088/1674-1056/adb687
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Predicted stable two-dimensional semiconductor TiOS materials with promising photocatalytic properties: First-principles calculations

Pan Zhang(张攀)1, Shihai Fu(付世海)1, Chunying Pu(濮春英)1, Xin Tang(唐鑫)2, and Dawei Zhou(周大伟)1,†
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
2 College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
Abstract  TiO2 is a well-known photocatalyst with a band gap of 3.2 eV, yet its ability to absorb light is limited to the short wavelengths of ultraviolet light. To achieve a more effective photocatalytic material, we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations. Three stable low-energy structures with space groups of P21/m, P3m1 and P21/c are identified. Among these structures, the Janus P3m1 phase is a direct bandgap semiconductor, while the P21/m and P21/c phases are indirect bandgap semiconductors. Utilizing the accurate hybrid density functional HSE06 method, the band gaps of the three structures are calculated to be 2.34 eV (P21/m), 2.24 eV (P3m1) and 3.22 eV (P21/c). Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges. Moreover, the photocatalytic calculations also indicate that both P21/m and P3m1 TiOS can provide a strong driving force for converting H2O to H2 and O2 in an acidic environment with pH = 0. The structural stabilities, mechanical properties, electronic structures and hydrogen evolution reaction activities are also discussed in detail. Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.
Keywords:  first principles      structure prediction      TiOS semiconductor      photocatalysis  
Received:  26 November 2024      Revised:  30 January 2025      Accepted manuscript online:  17 February 2025
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.46.-w (Structure of nanoscale materials)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52272219 and U1904612) and the Natural Science Foundation of Henan Province (Grant No. 242300421191).
Corresponding Authors:  Dawei Zhou     E-mail:  zhoudawei@nynu.edu.cn

Cite this article: 

Pan Zhang(张攀), Shihai Fu(付世海), Chunying Pu(濮春英), Xin Tang(唐鑫), and Dawei Zhou(周大伟) Predicted stable two-dimensional semiconductor TiOS materials with promising photocatalytic properties: First-principles calculations 2025 Chin. Phys. B 34 057103

[1] Ma Y, Wang X, Jia Y, Chen X, Han H and Li C 2014 Chem. Rev. 114 9987
[2] A G F 1959 Rev. Mod. Phys. 31 646
[3] Diebold U 2003 Surf. Sci. Rep. 48 53
[4] Diasanayake M, Senadeera G, Sarangika H, Ekanayake P, Thotawattage C, Divarathne H and Kumari J 2016 Mater. Today: Proc. 3 S40
[5] Zakir O, Ait-Karra A, Idouhli R, Khadiri M, Dikici B, Aityoub A, Abouelfida A and Outzourhit A 2023 J. Solid State Electr. 27 2289
[6] Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi M M, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A and Pandey S 2023 J. Drug Deliv. Sci. Tec. 82 104370
[7] Ge S, Sang D, Zou L, Yao Y, Zhou C, Fu H, Xi H, Fan J, Meng L and Wang C 2023 Nanomaterials 13 1141
[8] Fujishima A and Honda K 1972 Nature 238 37
[9] Lacerda A M, Larrosa I and Dunn S 2015 Nanoscale 7 12331
[10] Wang J, Guo R T, Bi Z X, Chen X, Hu X and PanWG 2022 Nanoscale 14 11512
[11] Singh R and Dutta S 2018 Fuel Cells 220 607
[12] Baig U, Uddin M K and Sajid M 2020 Mater. Today Commun. 25 101534
[13] Prakash J, Kumar A, Dai H, Janegitz B C, Krishnan V, Swart H C and Sun S 2021 Mater. Today Sustain. 13 100066
[14] Li Y, Shen Q, Guan R, Xue J, Liu X, Jia H, Xu B and Wu Y 2020 J. Mater. Chem. C 8 1025
[15] Ji J, Liu B, Huang H, Wang X, Yan L, Qu S, Liu X, Jiang H, Duan M and Li Y 2021 J. Mater. Chem. C 9 7057
[16] Wang J, Fu K, Zhang X, Yin Q, Wei G and Su Z 2021 J. Mater. Chem. C 9 8466
[17] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M and Bahnemann D W 2014 Chem. Rev. 114 9919
[18] Zhang J, Wu Y, Xing M, Leghari S A K and Sajjad S 2010 Energ. Environ. Sci. 3 715
[19] Etghani S A, Ansari E and Mohajerzadeh S 2019 Sci. Rep. 9 17943
[20] Zhong J, Chen F and Zhang J 2010 J. Phys. Chem. C 114 933
[21] Piątkowska A, Janus M, Szymański K and Mozia S 2021 Catalysts 11 144
[22] Umezawa N, Janotti A, Rinke P, Chikyow T and Van de Walle C G 2008 Appl. Phys. Lett. 92 041104
[23] Cui Y, Du H and Wen L 2009 Solid State Commun. 149 634
[24] Umebayashi T, Yamaki T, Itoh H and Asai K 2002 Appl. Phys. Lett. 81 454
[25] Huang Z, Gao Z, Gao S, Wang Q, Wang Z, Huang B and Dai Y 2017 Chin. J. Catal. 38 821
[26] Sharotri N and Sud D 2015 New J. Chem. 39 2217
[27] Bu X, Wang Y, Li J and Zhang C 2015 J. Alloys Compd. 628 20
[28] Lin Y H, Chou S H and Chu H 2014 J Nanopart Res. 16 2539
[29] Kovačić M, Perović K, Papac J, Tomić A, Matoh L, Žener B, Brodar T, Capan I, Surca A K and Kušić H 2020 J. Materials 13 1621
[30] Ramanathan R and Bansal V 2015 J. RSC Advances 5 1424
[31] El Nemr A, Helmy E T, Gomaa E A, Eldafrawy S and Mousa M 2019 J. Environ. Chem. Eng. 7 103385
[32] Shvadchina Y O, Cherepivskaya M, Vakulenko V, Sova A, Stolyarova I and Prikhodko R 2015 J. Water Chem. Technol. 37 283
[33] Kang I C, Zhang Q, Yin S, Sato T and Saito F 2008 Environ. Sci. Technol. 42 3622
[34] Jovanovic D, Zagorac D, Matovic B, Zarubica A and Zagorac J 2021 Acta Crystallogr. Sect. B: Struct. Sci. 77 833
[35] Xiang Y J, Gao S, Wang C, Fang H, Duan X, Zheng Y F and Zhang Y Y 2024 Chin. Phys. B 33 087101
[36] Barhoumi M, Said I, Yedukondalu N and Said M 2023 Results Phys. 48 106438
[37] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[38] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[39] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[44] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[45] Yuan J H, Song Y Q, Chen Q, Xue K H and Miao X S 2019 Appl. Surf. Sci. 469 456
[46] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[47] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C and Sutton A P 1998 Phys. Rev. B 57 1505
[48] Zhang L, Yang Z, Gong T, Pan R, Wang H, Guo Z, Zhang H and Fu X 2020 J. Mater. Chem. A 8 8813
[49] Zheng T, Lin Y C, Yu Y, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G and Geohegan D B 2021 Nano Lett. 21 931
[50] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H and Yang Y 2017 Nat. Nanotechnol. 12 744
[51] Zhou W, Chen J, Yang Z, Liu J and Ouyang F 2019 Phys. Rev. B 99 075160
[52] Peng R, Ma Y, Huang B and Dai Y 2019 J. Mater. Chem. A 7 603
[53] Li L, Yang Z X, Huang T, Wan H, Chen W Y, Zhang T, Huang G F, Hu W and Huang W Q 2024 Appl. Phys. Lett. 125 223904
[54] Frey N C, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y and Shenoy V B 2019 J. ACS Nano 13 2831
[55] AbdollahiMand TaganiMB 2022 J. Phys. Condens. Matter 34 185702
[56] Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366
[57] Koo H C, Kim S B, Kim H, Park T E, Choi J W, Kim K W, Go G, Oh J H, Lee D K and Park E S 2020 Adv. Mater. 32 2002117
[58] Bihlmayer G, Rader O and Winkler R 2015 New J. Phys. 17 050202
[59] Ahmad S and Mukherjee S 2014 J. Graphene 3 52
[60] Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[61] Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 046804
[62] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[63] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204
[64] Nye J F 1985 Physical properties of crystals: their representation by tensors and matrices (2nd edn.) (Oxford: Clarendon Press) pp. 182- 184
[65] Peng R, Ma Y, He Z, Huang B, Kou L and Dai Y 2019 Nano Lett. 19 1227
[66] Li P, You Z, Haugstad G and Cui T 2011 Appl. Phys. Lett. 98 253105
[67] Li P 2019 Phys. Chem. Chem. Phys. 21 11150
[68] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120
[69] Xiong Z Q, Zhang P C, KangWB and FangWY 2020 Acta Phys. Sin. 69 166301 (in Chinese)
[70] Chen S and Wang L W 2012 Chem. Mater. 24 3659
[71] Yang N, Zhao Y, He T, Wang K, Luo Z, Zheng H, Shen Y, Santiago A R P, Zhou T and Zhan W 2024 ACS Appl. Nano Mater. 7 9598
[72] Wu X, Zuo S, Qiu M, Li Y, Zhang Y, An P, Zhang J, Zhang H and Zhang J 2021 Chem. Eng. J. 420 127681
[1] Pressure-driven crystal structure evolution in RbB2C4 compounds
Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼). Chin. Phys. B, 2025, 34(4): 046201.
[2] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[3] Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
Yi-Jie Xiang(向依婕), Siyan Gao(高思妍), Chunlei Wang(王春雷), Haiping Fang(方海平), Xiangmei Duan(段香梅), Yi-Feng Zheng(郑益峰), and Yue-Yu Zhang(张越宇). Chin. Phys. B, 2024, 33(8): 087101.
[4] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[5] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[6] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lanci Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[7] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[8] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[9] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[10] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[11] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[12] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[13] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[14] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[15] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
No Suggested Reading articles found!