Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014701    DOI: 10.1088/1674-1056/ad989d
RAPID COMMUNICATION Prev   Next  

Stable nanobubbles on ordered water monolayer near ionic model surfaces

Luyao Huang(黄璐瑶)1,2, Cheng Ling(凌澄)3,4, Limin Zhou(周利民)5, Wenlong Liang(梁文龙)2, Yujie Huang(黄雨婕)2, Lijuan Zhang(张立娟)5, Phornphimon Maitarad1,†, Dengsong Zhang(张登松)2,‡, and Chunlei Wang(王春雷)2,§
1 Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China;
2 International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China;
3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Abstract  The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry. However, the state of nanobubbles on mineral solid surfaces is still elusive. In this study, molecular dynamics (MD) simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity, modulated by surface charges, to elucidate the adsorption behavior of nanobubbles at the interface. Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry. We observed that as the surface charge increases, the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape, and ultimately forming a stable nanobubble upon an ordered water monolayer. When the solid-water interactions are weak with a small partial charge, the hydrophobic gas (N$_{2}$) molecules accumulate near the solid surfaces. However, we have found, for the first time, that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges. Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.
Keywords:  nanobubbles      molecular dynamic simulation      ordered water monolayer      hydrogen bond network  
Received:  18 September 2024      Revised:  28 October 2024      Accepted manuscript online:  29 November 2024
PACS:  47.55.dd (Bubble dynamics)  
  87.10.Tf (Molecular dynamics simulation)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
Fund: This study was supported by the National Natural Science Foundation of China (Grant Nos. 12022508, 12074394, and 22125604), Shanghai Supercomputer Center of China, and Shanghai Snowlake Technology Co. Ltd.
Corresponding Authors:  Phornphimon Maitarad, Dengsong Zhang, Chunlei Wang     E-mail:  pmaitarad@shu.edu.cn;dszhang@shu.edu.cn;wangchunlei1982@shu.edu.cn

Cite this article: 

Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷) Stable nanobubbles on ordered water monolayer near ionic model surfaces 2025 Chin. Phys. B 34 014701

[1] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377
[2] Temesgen T, Bui T T, Han M, Kim T I and Park H 2017 Adv. Colloid Interface Sci. 246 40
[3] Yang X, Yang Q, Zhou L, Zhang L and Hu J 2022 Chin. Phys. B 31 054702
[4] Wen B, Pan Y, Zhang L,Wang S, Zhou L,Wang C and Hu J 2022 Phys. Rev. Fluids 7 103601
[5] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109
[6] Chen Q, Wiedenroth H S, German S R and White H S 2015 J. Am. Chem. Soc. 137 12064
[7] Lu D 2024 The Innovation 5 100646
[8] Vogt H and Balzer R J 2005 Electrochim. Acta 50 2073
[9] Angulo A, van der Linde P, Gardeniers H, ModestinoMand Fernández Rivas D 2020 Joule 4 555
[10] Zhao X, Ren H and Luo L 2019 Langmuir 35 5392
[11] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K and Jaramillo T F 2017 Science 355 eaad4998
[12] Ma Y, Guo Z, Chen Q and Zhang X 2021 Langmuir 37 2771
[13] Chen Q, Zhao J, Deng X, Shan Y and Peng Y 2022 J. Phys. Chem. Lett. 13 6153
[14] Marion C, Li R and Waters K E 2020 Adv. Colloid Interface Sci. 279 102142
[15] Ren L, Zhang Z, Zeng W and Zhang Y 2023 Int. J. Min. Sci. Technol. 33 503
[16] Zhao Y, Jia J, Liu C and Feng X 2024 The Innovation 5 100576
[17] Li H, Fang W, Wang L X, Liu Y, Liu L, Sun T, Liao C, Zhu Y, Wang L and Xiao F S 2023 The Innovation 4 100445
[18] Xiang M, Shen Z, Zheng J, Song M, He Q, Yang Y, Zhu J, Geng Y, Yue F, Dong Q, Ge Y, Wang R, Wei J, Wang W, Huang H, Zhang H, Zhu Q and Zhang C J 2024 The Innovation 5 100540
[19] Zhang W, Shao Y, Zou X, Yan J, Xu M, Zhou G and Fu S 2024 The Innovation 5 100642
[20] Sobhy A and Tao D 2013 Int. J. Miner. Process. 124 109
[21] Wang Y, Pan Z, Luo X, Qin W and Jiao F 2019 Miner. Eng. 133 127
[22] Zhou W, Chen H, Ou L and Shi Q 2016 Int. J. Miner. Process. 157 236
[23] Zhang N, Pang T, Han R, Chen S, Li Z, Yu Y, Shi Z, Liu L, Qu J and Zhou A 2022 Int. J. Min. Sci. Technol. 32 201
[24] Alheshibri M, Al Baroot A, Shui L and Zhang M 2021 Curr. Opin. Colloid Interface Sci. 55 101470
[25] Zhang L, Zhang X, Zhang Y, Hu J and Fang H 2010 Soft Matter 6 4515
[26] Maheshwari S, van der Hoef M, Zhang X and Lohse D 2016 Langmuir 32 11116
[27] Perez Sirkin Y A, Gadea E D, Scherlis D A and Molinero V 2019 J. Am. Chem. Soc. 141 10801
[28] Zhang F, Cai H, Fan G, Gui X, Xing Y and Cao Y 2024 Colloids Surf. A 699 134633
[29] Zhang L, Chen H, Li Z, Fang H and Hu J 2008 Sci. China Phys. Mech. 51 219
[30] Weijs J H and Lohse D 2013 Phys. Rev. Lett. 110 054501
[31] Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646
[32] Wang Z, Yang L, Liu C and Lin S 2023 Chin. Phys. B 32 023101
[33] Zhou L, Wang X, Shin H J, Wang J, Tai R, Zhang X, Fang H, Xiao W, Wang L, Wang C, Gao X, Hu J and Zhang L 2020 J. Am. Chem. Soc. 142 5583
[34] Gao Z, Wu W, Sun W and Wang B 2021 Langmuir 37 11281
[35] Hu K, Luo L, Sun X and Li H 2022 Nanoscale Adv. 4 2893
[36] Yen T H, Lin C H and Chen Y L 2021 Langmuir 37 2759
[37] Maheshwari S, van der Hoef M, Rodríguez Rodríguez J and Lohse D 2018 ACS Nano 12 2603
[38] Lan L, Pan Y, Zhou L, Kuang H, Zhang L and Wen B 2025 J. Colloid Interface Sci. 678 322
[39] Lei J, Huang D, Zhao W, Liu S and Yue Y 2024 Int. J. Heat Mass Transfer 225 125407
[40] Zhang P, Chen C, Feng M, Sun C and Xu X 2024 J. Am. Chem. Soc. 146 19537
[41] Desgranges C and Delhommelle J 2019 J. Phys. Chem. C 123 11707
[42] Attard P 2003 Adv. Colloid Interface Sci. 104 75
[43] Qu M, Huang G, Liu X, Nie X, Qi C, Wang H, Hu J, Fang H, Gao Y, Liu W T, Francisco J S and Wang C 2022 Chem. Sci. 13 10546
[44] Zhao Z, Park J, Choi C, Hong S, Hui X, Zhang H, Benedict Lo T W, Robertson AW, Lv Z, Jung Y and Sun Z 2022 The Innovation 3 100190
[45] Hou L, Liu X, Ge X, Hu R, Cui Z, Wang N and Zhao Y 2023 The Innovation 4 100508
[46] Wang S, Tang L and Tao X 2018 Fuel 212 326
[47] Chang Z, Chen X and Peng Y 2017 Powder Technol. 321 190
[48] Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203
[49] Yuan Q and Zhao Y P 2010 Phys. Rev. Lett. 104 246101
[50] Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962
[51] Lützenkirchen J, Zimmermann R, Preočanin T, Filby A, Kupcik T, Küttner D, Abdelmonem A, Schild D, Rabung T, Plaschke M, Brandenstein F, Werner C and Geckeis H 2010 Adv. Colloid Interface Sci. 157 61
[52] Lee K, Kim Q, An S, An J, Kim J, Kim B and Jhe W 2014 Proc. Natl. Acad. Sci. USA 111 5784
[53] Zhang J, Tan J, Pei R, Ye S and Luo Y 2021 J. Am. Chem. Soc. 143 13074
[54] Wang Y H, Zheng S, Yang W M, Zhou R Y, He Q F, Radjenovic P, Dong J C, Li S, Zheng J, Yang Z L, Attard G, Pan F, Tian Z Q and Li J F 2021 Nature 600 81
[55] Shen L, Wang C, Min F, Liu L and Xue C 2020 Fuel 271 117557
[56] Xia W 2017 Int. J. Miner. Process. 168 19
[57] Chen Y, Xia W and Xie G 2018 Fuel 222 35
[58] Gao L X, Li X G, Lyu X J and Zhu X N 2024 Energy Fuels 38 1566
[59] Xia Y, Zhang R, Cao Y, Xing Y and Gui X 2020 Fuel 262 116535
[60] Li M, Xing Y, Zhu C, Liu Q, Yang Z, Zhang R, Zhang Y, Xia Y and Gui X 2022 Int. J. Min. Sci. Technol. 32 1389
[61] Li B, Su D, Che D, Zhang L, Liu S and Albijanic B 2024 Miner. Eng. 209 108610
[62] Xia Y, Zhang R, Xing Y and Gui X 2019 Fuel 235 687
[63] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19
[64] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801
[65] Wang S, Zhou L,Wang X,Wang C, Dong Y, Zhang Y, Gao Y, Zhang L and Hu J 2019 Langmuir 35 2498
[66] Wang S, Hou K and Heinz H 2021 J. Chem. Theory Comput. 17 5198
[67] Vernov A V and Steele W A 1986 Langmuir 2 219
[68] Scocchi G, Sergi D, D’Angelo C and Ortona A 2011 Phys. Rev. E 84 061602
[69] Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y and Hirano-Iwata A 2023 J. Colloid Interface Sci. 652 1775
[70] Li C,Wang S P, Zhang AMand Liu Y 2018 Phys. Rev. Fluids 3 123604
[71] Yang H, Jiang H, Cheng Y, Xing Y, Cao Y and Gui X 2024 J. Mol. Liq. 411 125758
[72] Varghese B and Sathian S P 2022 Phys. Chem. Chem. Phys 24 22298
[73] Weijs J H, Snoeijer J H and Lohse D 2012 Phys. Rev. Lett. 108 104501
[74] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[75] Qi C, Ling C and Wang C 2023 Crystals 13 263
[1] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[2] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[6] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[7] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[8] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[9] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[10] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[11] Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation
Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋). Chin. Phys. B, 2017, 26(6): 067101.
[12] Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳). Chin. Phys. B, 2017, 26(12): 128705.
[13] Interfacial nanobubbles produced by long-time preserved cold water
Li-Min Zhou(周利民), Shuo Wang(王硕), Jie Qiu(邱杰), Lei Wang(王磊), Xing-Ya Wang(王兴亚), Bin Li(李宾), Li-Juan Zhang(张立娟), Jun Hu(胡钧). Chin. Phys. B, 2017, 26(10): 106803.
[14] Effect of twin boundary on nanoimprint process of bicrystal Al thin film studied by molecular dynamics simulation
Xie Yue-Hong (谢月红), Xu Jian-Gang (徐建刚), Song Hai-Yang (宋海洋), Zhang Yun-Guang (张云光). Chin. Phys. B, 2015, 24(2): 026201.
[15] Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading
An Min-Rong (安敏荣), Song Hai-Yang (宋海洋), Su Jin-Fang (苏锦芳). Chin. Phys. B, 2012, 21(10): 106202.
No Suggested Reading articles found!