|
|
Stable nanobubbles on ordered water monolayer near ionic model surfaces |
Luyao Huang(黄璐瑶)1,2, Cheng Ling(凌澄)3,4, Limin Zhou(周利民)5, Wenlong Liang(梁文龙)2, Yujie Huang(黄雨婕)2, Lijuan Zhang(张立娟)5, Phornphimon Maitarad1,†, Dengsong Zhang(张登松)2,‡, and Chunlei Wang(王春雷)2,§ |
1 Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; 2 International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; 3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China |
|
|
Abstract The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry. However, the state of nanobubbles on mineral solid surfaces is still elusive. In this study, molecular dynamics (MD) simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity, modulated by surface charges, to elucidate the adsorption behavior of nanobubbles at the interface. Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry. We observed that as the surface charge increases, the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape, and ultimately forming a stable nanobubble upon an ordered water monolayer. When the solid-water interactions are weak with a small partial charge, the hydrophobic gas (N$_{2}$) molecules accumulate near the solid surfaces. However, we have found, for the first time, that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges. Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.
|
Received: 18 September 2024
Revised: 28 October 2024
Accepted manuscript online: 29 November 2024
|
PACS:
|
47.55.dd
|
(Bubble dynamics)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
82.30.Rs
|
(Hydrogen bonding, hydrophilic effects)
|
|
Fund: This study was supported by the National Natural Science Foundation of China (Grant Nos. 12022508, 12074394, and 22125604), Shanghai Supercomputer Center of China, and Shanghai Snowlake Technology Co. Ltd. |
Corresponding Authors:
Phornphimon Maitarad, Dengsong Zhang, Chunlei Wang
E-mail: pmaitarad@shu.edu.cn;dszhang@shu.edu.cn;wangchunlei1982@shu.edu.cn
|
Cite this article:
Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷) Stable nanobubbles on ordered water monolayer near ionic model surfaces 2025 Chin. Phys. B 34 014701
|
[1] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377 [2] Temesgen T, Bui T T, Han M, Kim T I and Park H 2017 Adv. Colloid Interface Sci. 246 40 [3] Yang X, Yang Q, Zhou L, Zhang L and Hu J 2022 Chin. Phys. B 31 054702 [4] Wen B, Pan Y, Zhang L,Wang S, Zhou L,Wang C and Hu J 2022 Phys. Rev. Fluids 7 103601 [5] Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109 [6] Chen Q, Wiedenroth H S, German S R and White H S 2015 J. Am. Chem. Soc. 137 12064 [7] Lu D 2024 The Innovation 5 100646 [8] Vogt H and Balzer R J 2005 Electrochim. Acta 50 2073 [9] Angulo A, van der Linde P, Gardeniers H, ModestinoMand Fernández Rivas D 2020 Joule 4 555 [10] Zhao X, Ren H and Luo L 2019 Langmuir 35 5392 [11] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K and Jaramillo T F 2017 Science 355 eaad4998 [12] Ma Y, Guo Z, Chen Q and Zhang X 2021 Langmuir 37 2771 [13] Chen Q, Zhao J, Deng X, Shan Y and Peng Y 2022 J. Phys. Chem. Lett. 13 6153 [14] Marion C, Li R and Waters K E 2020 Adv. Colloid Interface Sci. 279 102142 [15] Ren L, Zhang Z, Zeng W and Zhang Y 2023 Int. J. Min. Sci. Technol. 33 503 [16] Zhao Y, Jia J, Liu C and Feng X 2024 The Innovation 5 100576 [17] Li H, Fang W, Wang L X, Liu Y, Liu L, Sun T, Liao C, Zhu Y, Wang L and Xiao F S 2023 The Innovation 4 100445 [18] Xiang M, Shen Z, Zheng J, Song M, He Q, Yang Y, Zhu J, Geng Y, Yue F, Dong Q, Ge Y, Wang R, Wei J, Wang W, Huang H, Zhang H, Zhu Q and Zhang C J 2024 The Innovation 5 100540 [19] Zhang W, Shao Y, Zou X, Yan J, Xu M, Zhou G and Fu S 2024 The Innovation 5 100642 [20] Sobhy A and Tao D 2013 Int. J. Miner. Process. 124 109 [21] Wang Y, Pan Z, Luo X, Qin W and Jiao F 2019 Miner. Eng. 133 127 [22] Zhou W, Chen H, Ou L and Shi Q 2016 Int. J. Miner. Process. 157 236 [23] Zhang N, Pang T, Han R, Chen S, Li Z, Yu Y, Shi Z, Liu L, Qu J and Zhou A 2022 Int. J. Min. Sci. Technol. 32 201 [24] Alheshibri M, Al Baroot A, Shui L and Zhang M 2021 Curr. Opin. Colloid Interface Sci. 55 101470 [25] Zhang L, Zhang X, Zhang Y, Hu J and Fang H 2010 Soft Matter 6 4515 [26] Maheshwari S, van der Hoef M, Zhang X and Lohse D 2016 Langmuir 32 11116 [27] Perez Sirkin Y A, Gadea E D, Scherlis D A and Molinero V 2019 J. Am. Chem. Soc. 141 10801 [28] Zhang F, Cai H, Fan G, Gui X, Xing Y and Cao Y 2024 Colloids Surf. A 699 134633 [29] Zhang L, Chen H, Li Z, Fang H and Hu J 2008 Sci. China Phys. Mech. 51 219 [30] Weijs J H and Lohse D 2013 Phys. Rev. Lett. 110 054501 [31] Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646 [32] Wang Z, Yang L, Liu C and Lin S 2023 Chin. Phys. B 32 023101 [33] Zhou L, Wang X, Shin H J, Wang J, Tai R, Zhang X, Fang H, Xiao W, Wang L, Wang C, Gao X, Hu J and Zhang L 2020 J. Am. Chem. Soc. 142 5583 [34] Gao Z, Wu W, Sun W and Wang B 2021 Langmuir 37 11281 [35] Hu K, Luo L, Sun X and Li H 2022 Nanoscale Adv. 4 2893 [36] Yen T H, Lin C H and Chen Y L 2021 Langmuir 37 2759 [37] Maheshwari S, van der Hoef M, Rodríguez Rodríguez J and Lohse D 2018 ACS Nano 12 2603 [38] Lan L, Pan Y, Zhou L, Kuang H, Zhang L and Wen B 2025 J. Colloid Interface Sci. 678 322 [39] Lei J, Huang D, Zhao W, Liu S and Yue Y 2024 Int. J. Heat Mass Transfer 225 125407 [40] Zhang P, Chen C, Feng M, Sun C and Xu X 2024 J. Am. Chem. Soc. 146 19537 [41] Desgranges C and Delhommelle J 2019 J. Phys. Chem. C 123 11707 [42] Attard P 2003 Adv. Colloid Interface Sci. 104 75 [43] Qu M, Huang G, Liu X, Nie X, Qi C, Wang H, Hu J, Fang H, Gao Y, Liu W T, Francisco J S and Wang C 2022 Chem. Sci. 13 10546 [44] Zhao Z, Park J, Choi C, Hong S, Hui X, Zhang H, Benedict Lo T W, Robertson AW, Lv Z, Jung Y and Sun Z 2022 The Innovation 3 100190 [45] Hou L, Liu X, Ge X, Hu R, Cui Z, Wang N and Zhao Y 2023 The Innovation 4 100508 [46] Wang S, Tang L and Tao X 2018 Fuel 212 326 [47] Chang Z, Chen X and Peng Y 2017 Powder Technol. 321 190 [48] Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203 [49] Yuan Q and Zhao Y P 2010 Phys. Rev. Lett. 104 246101 [50] Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962 [51] Lützenkirchen J, Zimmermann R, Preočanin T, Filby A, Kupcik T, Küttner D, Abdelmonem A, Schild D, Rabung T, Plaschke M, Brandenstein F, Werner C and Geckeis H 2010 Adv. Colloid Interface Sci. 157 61 [52] Lee K, Kim Q, An S, An J, Kim J, Kim B and Jhe W 2014 Proc. Natl. Acad. Sci. USA 111 5784 [53] Zhang J, Tan J, Pei R, Ye S and Luo Y 2021 J. Am. Chem. Soc. 143 13074 [54] Wang Y H, Zheng S, Yang W M, Zhou R Y, He Q F, Radjenovic P, Dong J C, Li S, Zheng J, Yang Z L, Attard G, Pan F, Tian Z Q and Li J F 2021 Nature 600 81 [55] Shen L, Wang C, Min F, Liu L and Xue C 2020 Fuel 271 117557 [56] Xia W 2017 Int. J. Miner. Process. 168 19 [57] Chen Y, Xia W and Xie G 2018 Fuel 222 35 [58] Gao L X, Li X G, Lyu X J and Zhu X N 2024 Energy Fuels 38 1566 [59] Xia Y, Zhang R, Cao Y, Xing Y and Gui X 2020 Fuel 262 116535 [60] Li M, Xing Y, Zhu C, Liu Q, Yang Z, Zhang R, Zhang Y, Xia Y and Gui X 2022 Int. J. Min. Sci. Technol. 32 1389 [61] Li B, Su D, Che D, Zhang L, Liu S and Albijanic B 2024 Miner. Eng. 209 108610 [62] Xia Y, Zhang R, Xing Y and Gui X 2019 Fuel 235 687 [63] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19 [64] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801 [65] Wang S, Zhou L,Wang X,Wang C, Dong Y, Zhang Y, Gao Y, Zhang L and Hu J 2019 Langmuir 35 2498 [66] Wang S, Hou K and Heinz H 2021 J. Chem. Theory Comput. 17 5198 [67] Vernov A V and Steele W A 1986 Langmuir 2 219 [68] Scocchi G, Sergi D, D’Angelo C and Ortona A 2011 Phys. Rev. E 84 061602 [69] Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y and Hirano-Iwata A 2023 J. Colloid Interface Sci. 652 1775 [70] Li C,Wang S P, Zhang AMand Liu Y 2018 Phys. Rev. Fluids 3 123604 [71] Yang H, Jiang H, Cheng Y, Xing Y, Cao Y and Gui X 2024 J. Mol. Liq. 411 125758 [72] Varghese B and Sathian S P 2022 Phys. Chem. Chem. Phys 24 22298 [73] Weijs J H, Snoeijer J H and Lohse D 2012 Phys. Rev. Lett. 108 104501 [74] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505 [75] Qi C, Ling C and Wang C 2023 Crystals 13 263 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|