ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials |
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬)† |
Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Transformation acoustics (TA) has emerged as a powerful tool for designing several intriguing conceptual devices, which can manipulate acoustic waves in a flexible manner, yet their applications are limited in Hermitian materials. In this work, we propose the theory of complex-coordinate transformation acoustics (CCTA) and verify the effectiveness in realizing acoustic non-Hermitian metamaterials. Especially, we apply this theory for the first time to the design of acoustic parity-time (PT) and antisymmetric parity-time (APT) metamaterials and demonstrate two distinctive examples. First, we use this method to obtain the exceptional points (EPs) of the PT/APT system and observe the spontaneous phase transition of the scattering matrix in the transformation parameter space. Second, by selecting the Jacobian matrix's constitutive parameters, the PT/APT-symmetric system can also be configured to approach the zero and pole of the scattering matrix, behaving as an acoustic coherent perfect absorber and equivalent laser. We envision our proposed CCTA-based paradigm to open the way for exploring the non-Hermitian physics and finding application in the design of acoustic functional devices such as absorbers and amplifiers whose material parameters are hard to realize by using the conventional transformation method.
|
Received: 26 January 2023
Revised: 05 March 2023
Accepted manuscript online: 14 March 2023
|
PACS:
|
43.20.+g
|
(General linear acoustics)
|
|
43.28.+h
|
(Aeroacoustics and atmospheric sound)
|
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
43.38.+n
|
(Transduction; acoustical devices for the generation and reproduction of sound)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404402), the National Natural Science Foundation of China (Grant Nos. 12174190, 11634006, 12074286, and 81127901), the High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures, and the the Priority Academic Program Development of Jiangsu Higher Education Institutions. |
Corresponding Authors:
Bin Liang
E-mail: liangbin@nju.edu.cn
|
Cite this article:
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬) Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials 2023 Chin. Phys. B 32 094301
|
[1] Leonhardt U 2006 Science 312 1777 [2] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780 [3] Leonhardt U and Philbin T G 2009 Prog. Opt. 53 69 [4] Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2009 Siam Review 51 3 [5] Chen H Y 2009 J. Opt. A-Pure Appl. Opt. 11 075102 [6] Chen H Y and Chan C T 2010 J. Phys. D 43 113001 [7] Cummer S A and Schurig D 2007 New J. Phys. 9 45 [8] Chen H Y and Chan C T 2007 Appl. Phys. Lett. 91 183518 [9] Cummer S A, Christensen J and Alu A 2016 Nat. Rev. Mater. 1 16001 [10] Zhang S, Xia C G and Fang N 2011 Phys. Rev. Lett. 106 024301 [11] Zigoneanu L, Popa B I and Cummer S A 2014 Nat. Mater. 13 352 [12] Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301 [13] Torrent D and Sanchez-Dehesa J 2008 New J. Phys. 10 063015 [14] Mei J, Ma G C, Yang M, Yang Z Y, Wen W J and Sheng P 2012 Nat. Commun. 3 756 [15] Yang Z, Mei J, Yang M, Chan N H and Sheng P 2008 Phys. Rev. Lett. 101 204301 [16] Ma G C and Sheng P 2016 Sci. Adv. 2 e1501595 [17] Liang Z X and Li J S 2012 Phys. Rev. Lett. 108 114301 [18] Li J and Chan C T 2014 Phys. Rev. E 70 055602 [19] Zhu X F, Liang B, Kan W W, Zou X Y and Cheng J C 2011 Phys. Rev. Lett. 106 014301 [20] Tang W Y, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T and Ma G C 2020 Science 370 1077 [21] Achilleos V, Theocharis G, Richoux O and Pagneux V 2017 Phys. Rev. B 95 144303 [22] Zhang L 2021 Nat. Commun. 12 6297 [23] Ding K, Ma G C, Xiao M, Zhang Z Q and Chan C T 2016 Phys. Rev. X 6 021007 [24] Noh J, Huang S, Chen K P and Rechtsman M C 2018 Phys. Rev. Lett. 120 063902 [25] Wang B B, Ge Y, Yuan S Q, Jia D and Sun H X 2023 Progress in Electromagnetics Research-Pier 176 1 [26] Wang B B, Jia D, Ge Y, Yuan S Q and Sun H X 2022 New J. Phys. 24 113033 [27] Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A and Jing Y 2017 Phys. Rev. Lett. 119 035501 [28] Wang X, Fang X S, Mao D X, Jing Y and Li Y 2019 Phys. Rev. Lett. 123 214302 [29] Yang Y Z, Jia H, Bi Y F, Zhao H and Yang J 2019 Phys. Rev. Appl. 12 034040 [30] El Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 [31] Ashida Y, Gong Z P and Ueda M 2020 Adv. Phys. 69 249 [32] Gu Z M, Gao H, Cao P C, Liu T, Zhu X F and Zhu J 2021 Phys. Rev. Appl. 16 057001 [33] Achilleos V, Theocharis G, Richoux O and Pagneux V 2017 Phys. Rev. B 95 144303 [34] Konotop V V, Yang J K and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 [35] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [36] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 [37] Zhu X F, Ramezani H, Shi C Z, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042 [38] Auregan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301 [39] Ruter C E, Makris K G, Ganainy R E, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192 [40] Chen P Y and Jung J 2016 Phys. Rev. Appl. 5 064018 [41] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 [42] Li H X, Lopez M A, Zhu Y F, Fan X D, Torrent D, Liang B, Cheng J C and Christensen J 2019 Research 2019 8345683 [43] Sounas D L, Fleury R and Alu A 2015 Phys. Rev. Appl. 4 014005 [44] Longhi S 2010 Phys. Rev. A 82 031801 [45] Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902 [46] Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901 [47] Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L and Xiao Y H 2016 Nat. Phys. 12 1139 [48] Wu J H, Artoni M and La Rocca G C 2014 Phys. Rev. Lett. 113 123004 [49] Antonosyan D A, Solntsev A S and Sukhorukov A A 2015 Opt. Lett. 40 4575 [50] Geng L L, Zhang W X, Zhang X D and Zhou X M 2021 P. Roy. Soc. A Mat. 477 20210641 [51] Luo X W, Zhang C W and Du S W 2022 Phys. Rev. Lett. 128 173602 [52] Chen T Y, Xiao Z S, Jiang S, Li W X, Li J C, Wang Y F, Wang X C, Huang A P and Zhang H 2022 J. Appl. Phys. 131 243101 [53] Ge L and Tureci H E 2013 Phys. Rev. A 88 053810 [54] Hu T, Wei W, Zhu X F, Yao J and Wu D J 2021 Phys. Rev. B 104 134110 [55] Longhi S and Feng L 2014 Opt. Lett. 39 5026 [56] Huang C Y, Zhang R, Han J L, Zheng J and Xu J Q 2014 Phys. Rev. A 89 023842 [57] Bai P, Ding K, Wang G, Luo J, Zhang Z Q, Chan C T, Wu Y and Lai Y 2016 Phys. Rev. A 94 063841 [58] Wong Z J, Xu Y L, Kim J, Brien K, Wang Y, Feng L and Zhang X 2016 Nat. Photon. 10 796 [59] Novitsky D V 2019 J. Opt. 21 085101 [60] Long H Y, Cheng Y and Liu X J 2017 Appl. Phys. Lett. 111 143502 [61] Li H X, Liang B and Cheng J C 2022 Sci. Sin-Phys. Mech. As. 52 244302 [62] Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 [63] Sakhdari M, Farhat M and Chen P Y 2017 New J. Phys. 19 065002 [64] Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y and Zhang X 2016 Nat. Commun. 7 11110 [65] Fei Y, Liu Y W, Dong D X, Fan Y Q and Fu Y Y 2020 Opt. Commun. 474 126123 [66] Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|