Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124303    DOI: 10.1088/1674-1056/acf5d1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators

Yu-Wei Xu(许雨薇)1, Yi-Jun Guan(管义钧)1,2,†, Cheng-Hao Wu(吴成昊)1, Yong Ge(葛勇)1, Qiao-Rui Si(司乔瑞)1, Shou-Qi Yuan(袁寿其)1,‡, and Hong-Xiang Sun(孙宏祥)1,2,§
1 Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The numerical simulations and experimental results of an ultra-broadband acoustic ventilation barrier composed of periodic unit cells are reported in this paper. Based on multiple mechanisms, including sound absorption by eigenmodes of the unit cell and sound reflection by a plate structure on upper surface of the unit cell, a single-layer ventilation barrier with broadband sound reduction is designed, and its working bandwidth can reach about 1560 Hz. The experimental results accord well with the simulation results. Furthermore, two types of three-layer ventilation barriers are designed and demonstrated by using the unit cells with different values of a(the length of the hollow square region) and w(the width of the channel between the adjacent cavities), and the bandwidths of both ventilation barriers can increase to 3160 Hz and 3230 Hz, respectively. The designed barrier structures have the advantages of ultra-broadband sound reduction and ventilation, which paves the way to designing high-performance ventilation barriers for the applications in environmental protection and architectural acoustics.
Keywords:  acoustic metamaterials      ultra-broadband sound reduction      acoustic barrier      ventilation  
Received:  02 June 2023      Revised:  27 July 2023      Accepted manuscript online:  01 September 2023
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12174159, 12274183, and 51976079), the National Key Research and Development Program of China (Grant No.2020YFC1512403), and the Research Project of State Key Laboratory of Mechanical System and Vibration (Grant No.MSV202201).
Corresponding Authors:  Yi-Jun Guan, Shou-Qi Yuan, Hong-Xiang Sun     E-mail:  gyjlxy@ujs.edu.cn;Shouqiy@ujs.edu.cn;jsdxshx@ujs.edu.cn

Cite this article: 

Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥) Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators 2023 Chin. Phys. B 32 124303

[1] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
[2] Jia D, Wang Y, Ge Y, Yuan S Q and Sun H X 2021 Prog. Electromagn. Res. 172 13
[3] Liang Z X and Li J S 2012 Phys. Rev. Lett. 108 114301
[4] Cummer S A, Christensen J and Alú A 2016 Nat. Rev. Mater. 1 16001
[5] Ma G C and Sheng P 2016 Sci. Adv. 2 e1501595
[6] Gao N S, Zhang Z C, Deng J, Guo X Y, Cheng B Z and Hou H 2022 Adv. Mater. Technol. 7 2100698
[7] Tsang L, Liao T H and Tan S R 2021 Prog. Electromagn. Res. 171 137
[8] Yu S Y, Ni X, Xu Y L, He C, Nayar P, Lu M H and Chen Y F 2016 Chin. Phys. Lett. 33 044302
[9] Geng Z G, P Y G, Shen Y X, Zhao D G and Zhu X F 2019 Acta Phys. Sin. 68 227802 (in Chinese)
[10] Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Sci. Rep. 3 2546
[11] Mei J and Wu Y 2014 New J. Phys. 16 123007
[12] Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T and Liu Z Y 2014 Sci. Rep. 4 6517
[13] Yan Q H, Chen H S and Yang Y H 2021 Prog. Electromagn. Res. 172 33
[14] Zhang H, Xiao Y, Wen J H, Yu D L and Wen X S 2016 Appl. Phys. Lett. 108 141902
[15] Assouar B, Liang B, Wu Y, Li Y, Cheng J C and Jing Y 2018 Nat. Rev. Mater. 3 460
[16] Quan L, Sounas D L and Alú A 2019 Phys. Rev. Lett. 123 064301
[17] Hu Z P, He N, Sun Y W, Jin Y and He S L 2021 Prog. Electromagn. Res. 172 51
[18] Romero-Garcia V, Theocharis G, Richoux O, Merkel A, Tournat V and Pagneux V 2016 Sci. Rep. 6 19519
[19] Jimenez N, Huang W, Romero-Garcia V, Pagneux V and Groby J P 2016 Appl. Phys. Lett. 109 121902
[20] Li J F, Wang W Q, Xie Y B, Popa B I and Cummer S A 2016 Appl. Phys. Lett. 109 091908
[21] Jimenez N, Romero-Garcia V, Pagneux V and Groby J P 2017 Phys. Rev. B 95 014205
[22] Long H Y, Cheng Y and Liu X J 2017 Appl. Phys. Lett. 111 143502
[23] Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhu J and Li Y 2020 Sci. Bull. 65 373
[24] Li L J, Zheng B, Zhong L M, Yang J, Liang B and Cheng J C 2018 Appl. Phys. Lett. 113 103501
[25] Zhang C and Hu X H 2016 Phys. Rev. Appl. 6 064025
[26] Yang M, Chen S Y, Fuab C X and Sheng P 2017 Mater. Horiz. 4 673
[27] Jimenez N, Romero-Garcia V, Pagneux V and Groby J P 2017 Sci. Rep. 7 13595
[28] Mei J, Ma G C, Yang M, Yang Z Y, Wen W J and Sheng P 2012 Nat. Commun. 3 756
[29] Ma G C, Yang M, Xiao S W, Yang Z Y and Sheng P 2014 Nat. Mater. 13 873
[30] Yang M, Li Y, Meng C, Fu C X, Mei J, Yang Z Y and Sheng P 2015 Comptes. Rendus. Méc. 343 635
[31] Yang M, Meng C, Fu C X, Li Y, Yang Z Y and Sheng P 2015 Appl. Phys. Lett. 107 104104
[32] Cai X B, Guo Q Q, Hu G K and Yang J 2014 Appl. Phys. Lett. 105 121901
[33] Li Y and Assouar B 2016 Appl. Phys. Lett. 108 063502
[34] Tang Y F, Xin F X, Huang L X and Lu T J 2017 Eur. Phys. Lett. 118 44002
[35] Chang H T, Liu L, Zhang C and Hu X H 2018 AIP Adv. 8 045115
[36] Wang X L, Luo X D, Zhao H and Huang Z Y 2018 Appl. Phys. Lett. 112 021901
[37] Donda K, Zhu Y F, Fan S W, Cao L Y, Li Y and Assouar B 2019 Appl. Phys. Lett. 115 173506
[38] Long H Y, Shao C, Liu C, Cheng Y and Liu X J 2019 Appl. Phys. Lett. 115 103503
[39] Shao C, Long H Y, Chen Y and Liu X J 2019 Sci. Rep. 9 13482
[40] Donda K, Zhu Y F, Merkel A, Fan S W, Cao L Y, Wan S and Assouar B 2021 Smart Mater. Struct. 30 085003
[41] Wu X X, Fu C X, Li X, Meng Y, Gao Y B, Tian J X, Wang, L, Huang Y Z, Yang Z Y and Wen W J 2016 Appl. Phys. Lett. 109 043501
[42] Xu Z X, Meng H Y, Chen A, Yang J, Liang B and Cheng J C 2021 J. Appl. Phys. 129 094502
[43] Wu X X, Au-Yeung K Y, Li X, Roberts R C, Tian J X, Hu C D, Huang Y Z, Wang S X, Yang Z Y and Wen W J 2018 Appl. Phys. Lett. 112 103505
[44] Kumar S and Lee H P 2020 Appl. Phys. Lett. 116 134103
[45] Ghaffarivardavagh R, Nikolajczyk J, Anderson S and Zhang X 2019 Phys. Rev. B 99 024302
[46] Zhang H L, Zhu Y F, Liang B, Yang J and Cheng J C 2017 Appl. Phys. Lett. 111 203502
[47] Xu Z X, Zheng B, Yang J, Liang B and Cheng J C 2021 Phys. Rev. Appl. 16 044020
[48] Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q and Liu X J 2015 Nat. Mater. 14 1013
[49] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[50] Shen C, Xie Y B, Li J F, Cummer S A and Jing Y 2018 J. Appl. Phys. 123 124501
[51] Zhu Y F, Gu Z M, Liang B, Yang J, Yang J, Yin L L and Cheng J C 2016 Appl. Phys. Lett. 109 103504
[52] Ge Y, Sun H X, Yuan S Q and Lai Y 2019 Phys. Rev. Mater. 3 065203
[53] Dong R Z, Mao D X, Wang X and Li Y 2021 Phys. Rev. Appl. 15 024044
[54] Xu Z X, Gao H, Ding Y J, Yang J, Liang B and Cheng J C 2020 Phys. Rev. Appl. 14 054016
[55] Chen A, Xu Z X, Zheng B, Yang J, Liang B and Cheng J C 2022 Appl. Phys. Lett. 120 033501
[56] Wang Z W, Chen A, Xu Z X, Yang J, Liang B and Cheng J C 2023 Sci. China-Phys. Mech. Astron. 66 224311
[57] Liu C K, Wang H J, Liang B, Cheng J C and Lai Y 2022 Appl. Phys. Lett. 120 231702
[58] Tang Y F, Liang B and Lin S Y 2022 J. Acoust. Soc. Am. 152 2412
[59] Gao Y X, Li Z W, Liang B, Yang J and Cheng J C 2022 Appl. Phys. Lett. 120 261701
[1] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[2] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[3] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[4] Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials
Li Li (李黎), Wen Ji-Hong (温激鸿), Cai Li (蔡力), Zhao Hong-Gang (赵宏刚), Wen Xi-Sen (温熙森). Chin. Phys. B, 2013, 22(1): 014301.
No Suggested Reading articles found!