Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064206    DOI: 10.1088/1674-1056/ac9d87
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultraviolet metalens and metalens array of focused vortex beams

Jinping Zhang(张金平)1,2,†, Yan Wang(王焱)2,4,†, Huan Yuan(袁欢)2, Zehao Wang(王泽豪)1, Yang Deng(邓阳)1, Chengzhi Huang(黄承志)3,‡, Jiagui Wu(吴加贵)1,§, and Junbo Yang(杨俊波)2,¶
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
2 Center of Material Science, National University of Defense Technology, Changsha 410073, China;
3 Key Laboratory of Luminescence Analysis and Molecular Sensing(Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
4 College of Artificial Intelligence, Southwest University, Chongqing 400715, China
Abstract  The solar-blind ultraviolet (UV) wavelength is particularly interesting within the range of 200 nm-300 nm. Here, we propose a focusing metalens, focusing vortex beam (VB) metalens and metalens array that specifically work in the UV band to focus a beam or VB. Firstly, a high numerical aperture (NA) focusing metalens working at a wavelength of 214.2 nm was designed, and the NA reached 0.83. The corresponding conversion efficiency of the unit structure reached as high as 94%, and the full width at half maximum was only 117.2 nm. Metalenses with large NA can act as optical tweezers and can be applied to trap ultracold atoms and molecules. Secondly, a focused VB metalens in the wavelength range of 200 nm-300 nm was also designed, which can convert polarized light into a VB and focus the VB simultaneously. Finally, a metalens array was developed to focus VBs with different topological charges on the same focal plane. This series of UV metalenses could be widely used in UV microscopy, photolithography, photonics communication, etc.
Keywords:  metalens      metamaterials      ultraviolet (UV)      vortex beams  
Received:  22 June 2022      Revised:  31 August 2022      Accepted manuscript online:  26 October 2022
PACS:  42.79.Bh (Lenses, prisms and mirrors)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.72.Bj (Visible and ultraviolet sources)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60907003, 61805278, 61875168, and 22134005), Chongqing Science Funds for Distinguished Young Scientists (Grant No. cstc2021jcyj-jqX0027), Innovation Research 2035 Pilot Plan of Southwest University (Grant No. SWU-XDPY22012), China Postdoctoral Science Foundation (Grant No. 2018M633704), Innovation Support Program for Overseas Students in Chongqing (Grant No. cx2021008), Foundation of NUDT (Grant Nos. JC13-02-13 and ZK17-03-01), Hunan Provincial Natural Science Foundation of China (Grant No. 13JJ3001), Program for New Century Excellent Talents in University (Grant No. NCET-12-0142), and Chongqing Talents Program for Outstanding Scientists (Grant No. cstc2021ycjh-bgzxm0178).
Corresponding Authors:  Chengzhi Huang, Jiagui Wu, Junbo Yang     E-mail:  chengzhi@swu.edu.cn;mgh@swu.edu.cn;yangjunbo@nudt.edu.cn

Cite this article: 

Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波) Ultraviolet metalens and metalens array of focused vortex beams 2023 Chin. Phys. B 32 064206

[1] Brizuela F, Wang Y, Brewer C, Pedaci F, Chao W, Anderson E, Liu Y, Goldberg K A, Naulleau P, Wachulak P, Marconi M C, Attwood D T, Rocca J J and Menoni C S 2009 Opt. Lett. 34 271
[2] Harata A, Matuda T and Hirashima S 2007 Jpn. J. Appl. Phys. 46 4561
[3] Hirai Y, Inamoto Y, Sugano K, Tsuchiya T and Tabata O 2006 Journal of Micromechanics and Microengineering 17 199
[4] Takahashi H, Heo Y J, Arakawa N, Kan T, Matsumoto K, Kawano R and Shimoyama I 2016 Microsystems and Nanoengineering 2 16049
[5] Bendickson J M, Glytsis E N and Gaylord T K 1999 JOSA A 16 113
[6] Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V and Capasso F 2017 Nano Lett. 17 3188
[7] Fujita T, Nishihara H and Koyama J 1982 Opt. Lett. 7 578
[8] Ye J S, Zhang Y and Hane K 2009 Opt. Express 17 7348
[9] Ahmadivand A, Gerislioglu B and Ramezani Z 2019 Nanoscale 11 8091
[10] Huang B, Bai W, Jia H, Han J, Guo P, Wu J and Yang J 2020 Results in Physics 17 103085
[11] Jiang Q, Bao Y, Lin F, Zhu X, Zhang S and Fang Z 2018 Adv. Funct. Mater. 28 1705503
[12] Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V, Zaidi A and Capasso F 2017 Nano Lett. 17 1819
[13] Li B, Piyawattanametha W and Qiu Z 2019 Micromachines 10 310
[14] Li G, Zhang S and Zentgraf T 2017 Nat. Rev. Mater. 2 17010
[15] Liang Y, Liu H, Wang F, Meng H, Guo J, Li J and Wei Z 2018 Nanomaterials 8 288
[16] Mueller J B, Rubin N A, Devlin R C, Groever B and Capasso F 2017 Phys. Rev. Lett. 118 113901
[17] Kanwal S, Wen J, Yu B, Kumar D, Chen X, Kang Y, Bai C and Zhang D 2020 Nanomaterials 10 490
[18] Guo L, Hu Z, Wan R, Long L, Li T, Yan J, Lin Y, Zhang L, Zhu W and Wang L 2019 Nanophotonics 8 171
[19] Kanwal S, Wen J, Yu B, Chen X, Kumar D, Kang Y, Bai C, Ubaid S and Zhang D 2020 Nanomaterials 10 1439
[20] Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 6328
[21] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[22] Li Q T, Dong F, Wang B, Gan F, Chen J, Song Z, Xu L, Chu W, Xiao Y F and Gong Q 2016 Opt. Express 24 16309
[23] Arbabi A, Horie Y, Ball A J, Bagheri M and Faraon A 2015 Nat. Commun. 6 7069
[24] Lin D, Holsteen A L, Maguid E, Wetzstein G, Kik P G, Hasman E and Brongersma M L 2016 Nano Lett. 16 7671
[25] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190
[26] Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C and Capasso F 2016 Nano Lett. 16 7229
[27] Lalanne P, Astilean S, Chavel P, Cambril E and Launois H 1998 Opt. Lett. 23 1081
[28] Chen B H, Wu P C, Su V C, Lai Y C, Chu C H, Lee I C, Chen J W, Chen Y H, Lan Y C and Kuan C H 2017 Nano Lett. 17 6345
[29] Brizuela F, Wang Y, Brewer C A, Pedaci F, Chao W, Anderson E H, Liu Y, Goldberg K A, Naulleau P, Wachulak P, Marconi M C, Attwood D T, Rocca J J and Menoni C S 2009 Opt. Lett. 34 271
[30] Takahashi H, Jung Heo Y, Arakawa N, Kan T, Matsumoto K, Kawano R and S himoyama I 2016 Microsystems Nanoengineering 2 16049
[31] Hirai Y, Inamoto Y, Sugano K, Tsuchiya T and Tabata O 2007 Journal of Micromechanics and Microengineering 17 199
[32] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T and Wang J H 2018 Nat. Nanotechnol. 13 227
[33] Lin R and Li X 2019 Opt. Lett. 44 2819
[34] Simpson N, Allen L and Padgett M 1996 J. Mod. Opt. 43 2485
[35] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M and Franke-Arnold S 2004 Opt. Express 12 5448
[36] Grier D G 2003 Nature 424 810
[37] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[38] Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F and Villoresi P 2014 Phys. Rev. Lett. 113 060503
[39] Guo L, Xu S, Wan R, Li T, Xiong L, Wang L and Zhu W 2018 Journal of Nanophotonics 12 043513
[40] Tian S, Guo H, Hu J and Zhuang S 2019 Opt. Express 27 680
[41] Ma Y, Rui G, Gu B and Cui Y 2017 Scientific Reports 7 1
[42] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K and Wu Q 2018 Opt. Express 26 1351
[43] Ali F and Aksu S 2021 Scientific Reports 11 1
[44] Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N and Zentgraf T 2020 Photonics Research 8 1435
[45] Ma L, Guan J, Wang Y, Chen C, Zhang J, Lin J, Tan J and Jin P 2020 Nanophotonics 9 841
[46] Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T and Lezec H J 2020 Light Science Applications 9 55
[47] Deng Y, Wang X, Gong Z, Dong K, Lou S, Pegard N, Tom K B, Yang F, You Z, Waller L and Yao J 2020 Adv. Mater. 30 e1802632
[48] Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J and Liu H 2019 Laser and Photonics Reviews 13 1800289
[49] Tseng M L, Semmlinger M, Zhang M, Arndt C, Huang T T, Yang J, Kuo H Y, Su V C, Chen M K, Chu C H, Cerjan B, Tsai D P, Nordlander P and Halas N J 2022 Sci. Adv. 8 eabn5644
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[6] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[7] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[8] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[9] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[10] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[11] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[12] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[13] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[14] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[15] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
No Suggested Reading articles found!