ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Ultraviolet metalens and metalens array of focused vortex beams |
Jinping Zhang(张金平)1,2,†, Yan Wang(王焱)2,4,†, Huan Yuan(袁欢)2, Zehao Wang(王泽豪)1, Yang Deng(邓阳)1, Chengzhi Huang(黄承志)3,‡, Jiagui Wu(吴加贵)1,§, and Junbo Yang(杨俊波)2,¶ |
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 2 Center of Material Science, National University of Defense Technology, Changsha 410073, China; 3 Key Laboratory of Luminescence Analysis and Molecular Sensing(Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; 4 College of Artificial Intelligence, Southwest University, Chongqing 400715, China |
|
|
Abstract The solar-blind ultraviolet (UV) wavelength is particularly interesting within the range of 200 nm-300 nm. Here, we propose a focusing metalens, focusing vortex beam (VB) metalens and metalens array that specifically work in the UV band to focus a beam or VB. Firstly, a high numerical aperture (NA) focusing metalens working at a wavelength of 214.2 nm was designed, and the NA reached 0.83. The corresponding conversion efficiency of the unit structure reached as high as 94%, and the full width at half maximum was only 117.2 nm. Metalenses with large NA can act as optical tweezers and can be applied to trap ultracold atoms and molecules. Secondly, a focused VB metalens in the wavelength range of 200 nm-300 nm was also designed, which can convert polarized light into a VB and focus the VB simultaneously. Finally, a metalens array was developed to focus VBs with different topological charges on the same focal plane. This series of UV metalenses could be widely used in UV microscopy, photolithography, photonics communication, etc.
|
Received: 22 June 2022
Revised: 31 August 2022
Accepted manuscript online: 26 October 2022
|
PACS:
|
42.79.Bh
|
(Lenses, prisms and mirrors)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.72.Bj
|
(Visible and ultraviolet sources)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60907003, 61805278, 61875168, and 22134005), Chongqing Science Funds for Distinguished Young Scientists (Grant No. cstc2021jcyj-jqX0027), Innovation Research 2035 Pilot Plan of Southwest University (Grant No. SWU-XDPY22012), China Postdoctoral Science Foundation (Grant No. 2018M633704), Innovation Support Program for Overseas Students in Chongqing (Grant No. cx2021008), Foundation of NUDT (Grant Nos. JC13-02-13 and ZK17-03-01), Hunan Provincial Natural Science Foundation of China (Grant No. 13JJ3001), Program for New Century Excellent Talents in University (Grant No. NCET-12-0142), and Chongqing Talents Program for Outstanding Scientists (Grant No. cstc2021ycjh-bgzxm0178). |
Corresponding Authors:
Chengzhi Huang, Jiagui Wu, Junbo Yang
E-mail: chengzhi@swu.edu.cn;mgh@swu.edu.cn;yangjunbo@nudt.edu.cn
|
Cite this article:
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波) Ultraviolet metalens and metalens array of focused vortex beams 2023 Chin. Phys. B 32 064206
|
[1] Brizuela F, Wang Y, Brewer C, Pedaci F, Chao W, Anderson E, Liu Y, Goldberg K A, Naulleau P, Wachulak P, Marconi M C, Attwood D T, Rocca J J and Menoni C S 2009 Opt. Lett. 34 271 [2] Harata A, Matuda T and Hirashima S 2007 Jpn. J. Appl. Phys. 46 4561 [3] Hirai Y, Inamoto Y, Sugano K, Tsuchiya T and Tabata O 2006 Journal of Micromechanics and Microengineering 17 199 [4] Takahashi H, Heo Y J, Arakawa N, Kan T, Matsumoto K, Kawano R and Shimoyama I 2016 Microsystems and Nanoengineering 2 16049 [5] Bendickson J M, Glytsis E N and Gaylord T K 1999 JOSA A 16 113 [6] Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V and Capasso F 2017 Nano Lett. 17 3188 [7] Fujita T, Nishihara H and Koyama J 1982 Opt. Lett. 7 578 [8] Ye J S, Zhang Y and Hane K 2009 Opt. Express 17 7348 [9] Ahmadivand A, Gerislioglu B and Ramezani Z 2019 Nanoscale 11 8091 [10] Huang B, Bai W, Jia H, Han J, Guo P, Wu J and Yang J 2020 Results in Physics 17 103085 [11] Jiang Q, Bao Y, Lin F, Zhu X, Zhang S and Fang Z 2018 Adv. Funct. Mater. 28 1705503 [12] Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V, Zaidi A and Capasso F 2017 Nano Lett. 17 1819 [13] Li B, Piyawattanametha W and Qiu Z 2019 Micromachines 10 310 [14] Li G, Zhang S and Zentgraf T 2017 Nat. Rev. Mater. 2 17010 [15] Liang Y, Liu H, Wang F, Meng H, Guo J, Li J and Wei Z 2018 Nanomaterials 8 288 [16] Mueller J B, Rubin N A, Devlin R C, Groever B and Capasso F 2017 Phys. Rev. Lett. 118 113901 [17] Kanwal S, Wen J, Yu B, Kumar D, Chen X, Kang Y, Bai C and Zhang D 2020 Nanomaterials 10 490 [18] Guo L, Hu Z, Wan R, Long L, Li T, Yan J, Lin Y, Zhang L, Zhu W and Wang L 2019 Nanophotonics 8 171 [19] Kanwal S, Wen J, Yu B, Chen X, Kumar D, Kang Y, Bai C, Ubaid S and Zhang D 2020 Nanomaterials 10 1439 [20] Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 6328 [21] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333 [22] Li Q T, Dong F, Wang B, Gan F, Chen J, Song Z, Xu L, Chu W, Xiao Y F and Gong Q 2016 Opt. Express 24 16309 [23] Arbabi A, Horie Y, Ball A J, Bagheri M and Faraon A 2015 Nat. Commun. 6 7069 [24] Lin D, Holsteen A L, Maguid E, Wetzstein G, Kik P G, Hasman E and Brongersma M L 2016 Nano Lett. 16 7671 [25] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190 [26] Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C and Capasso F 2016 Nano Lett. 16 7229 [27] Lalanne P, Astilean S, Chavel P, Cambril E and Launois H 1998 Opt. Lett. 23 1081 [28] Chen B H, Wu P C, Su V C, Lai Y C, Chu C H, Lee I C, Chen J W, Chen Y H, Lan Y C and Kuan C H 2017 Nano Lett. 17 6345 [29] Brizuela F, Wang Y, Brewer C A, Pedaci F, Chao W, Anderson E H, Liu Y, Goldberg K A, Naulleau P, Wachulak P, Marconi M C, Attwood D T, Rocca J J and Menoni C S 2009 Opt. Lett. 34 271 [30] Takahashi H, Jung Heo Y, Arakawa N, Kan T, Matsumoto K, Kawano R and S himoyama I 2016 Microsystems Nanoengineering 2 16049 [31] Hirai Y, Inamoto Y, Sugano K, Tsuchiya T and Tabata O 2007 Journal of Micromechanics and Microengineering 17 199 [32] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T and Wang J H 2018 Nat. Nanotechnol. 13 227 [33] Lin R and Li X 2019 Opt. Lett. 44 2819 [34] Simpson N, Allen L and Padgett M 1996 J. Mod. Opt. 43 2485 [35] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M and Franke-Arnold S 2004 Opt. Express 12 5448 [36] Grier D G 2003 Nature 424 810 [37] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313 [38] Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F and Villoresi P 2014 Phys. Rev. Lett. 113 060503 [39] Guo L, Xu S, Wan R, Li T, Xiong L, Wang L and Zhu W 2018 Journal of Nanophotonics 12 043513 [40] Tian S, Guo H, Hu J and Zhuang S 2019 Opt. Express 27 680 [41] Ma Y, Rui G, Gu B and Cui Y 2017 Scientific Reports 7 1 [42] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K and Wu Q 2018 Opt. Express 26 1351 [43] Ali F and Aksu S 2021 Scientific Reports 11 1 [44] Chantakit T, Schlickriede C, Sain B, Meyer F, Weiss T, Chattham N and Zentgraf T 2020 Photonics Research 8 1435 [45] Ma L, Guan J, Wang Y, Chen C, Zhang J, Lin J, Tan J and Jin P 2020 Nanophotonics 9 841 [46] Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T and Lezec H J 2020 Light Science Applications 9 55 [47] Deng Y, Wang X, Gong Z, Dong K, Lou S, Pegard N, Tom K B, Yang F, You Z, Waller L and Yao J 2020 Adv. Mater. 30 e1802632 [48] Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J and Liu H 2019 Laser and Photonics Reviews 13 1800289 [49] Tseng M L, Semmlinger M, Zhang M, Arndt C, Huang T T, Yang J, Kuo H Y, Su V C, Chen M K, Chu C H, Cerjan B, Tsai D P, Nordlander P and Halas N J 2022 Sci. Adv. 8 eabn5644 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|