Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 088201    DOI: 10.1088/1674-1056/ad5276
RAPID COMMUNICATION Prev   Next  

Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures

Qiuchen Wang(王秋辰)1,2, Yuli Huang(黄昱力)1,2, Jing Xu(许晶)1,2, Xiqian Yu(禹习谦)1,2,3,†, Hong Li(李泓)1,2,3,‡, and Liquan Chen(陈立泉)1,2,3
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101408, China
Abstract  Silicon (Si) is a competitive anode material owing to its high theoretical capacity and low electrochemical potential. Recently, the prospect of Si anodes in solid-state batteries (SSBs) has been proposed due to less solid electrolyte interphase (SEI) formation and particle pulverization. However, major challenges arise for Si anodes in SSBs at elevated temperatures. In this work, the failure mechanisms of Si-Li$_{6}$PS$_{5}$Cl (LPSC) composite anodes above 80 $^\circ$C are thoroughly investigated from the perspectives of interface stability and (electro)chemo-mechanical effect. The chemistry and growth kinetics of Li$_{x}$Si$|$LPSC interphase are demonstrated by combining electrochemical, chemical and computational characterizations. Si and/or Si-P compound formed at Li$_{x}$Si$|$LPSC interface prove to be detrimental to interface stability at high temperatures. On the other hand, excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes. This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.
Keywords:  sulfide electrolytes      silicon anodes      interface stability      degradation kinetics      all-solid-state batteries  
Received:  09 May 2024      Revised:  30 May 2024      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.33.Pt (Solid state chemistry)  
  82.20.-w (Chemical kinetics and dynamics)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 22393904), the National Key Research and Development Program of China (Grant No. 2022YFB2502200), Beijing Municipal Science & Technology Commission (Grant No. Z221100006722015), and the New Energy Vehicle Power Battery Life Cycle Testing and Verification Public Service Platform Project (Grant No. 2022-235-224).
Corresponding Authors:  Xiqian Yu, Hong Li     E-mail:  xyu@iphy.ac.cn;hli@iphy.ac.cn

Cite this article: 

Qiuchen Wang(王秋辰), Yuli Huang(黄昱力), Jing Xu(许晶), Xiqian Yu(禹习谦), Hong Li(李泓), and Liquan Chen(陈立泉) Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures 2024 Chin. Phys. B 33 088201

[1] Janek J and Zeier W G 2016 Nat. Energy 1 16141
[2] Famprikis T, Canepa P, Dawson J A, Islam M S and Masquelier C 2019 Nat. Mater. 18 1278
[3] Cheng X B, Zhao C Z, Yao Y X, Liu H and Zhang Q 2019 Chem 5 74
[4] Gao X, Zhou Y N, Han D, Zhou J, Zhou D, Tang W and Goodenough J B 2020 Joule 4 16
[5] Krauskopf T, Richter F H, Zeier W G and Janek J 2020 Chem. Rev. 120 7745
[6] Wang M J, Kazyak E, Dasgupta N P and Sakamoto J 2021 Joule 5 1371
[7] Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, Lun Z, Rong Z, Persson K and Ceder G 2021 Chem. Rev. 121 1623
[8] Liu M, Wang C, Cheng Z, Ganapathy S, Haverkate L A, Unnikrishnan S and Wagemaker M 2020 ACS Mater. Lett. 2 665
[9] Janek J and Zeier W G 2023 Nat. Energy 8 230
[10] Tan D H S, Chen Y T, Yang H, Bao W, Sreenarayanan B, Doux J M, Li W, Lu B, Ham S Y, Sayahpour B, Scharf J, Wu E A, Deysher G, Han H E, Hah H J, Jeong H, Lee J B, Chen Z and Meng Y S 2021 Science 373 1494
[11] Franco Gonzalez A, Yang N H and Liu R S 2017 J. Phys. Chem. C 121 27775
[12] Lewis J A, Cavallaro K A, Liu Y and McDowell M T 2022 Joule 6 1418
[13] Sun L, Liu Y, Shao R, Wu J, Jiang R and Jin Z 2022 Energy Storage Mater. 46 482
[14] Cao D, Sun X, Li Y, Anderson A, Lu W and Zhu H 2022 Adv. Mater. 34 2200401
[15] Rana M, Rudel Y, Heuer P, Schlautmann E, Rosenbach C, Ali M Y, Wiggers H, Bielefeld A and Zeier W G 2023 ACS Energy Lett. 8 3196
[16] Yan W, Mu Z, Wang Z, Huang Y, Wu D, Lu P, Lu J, Xu J, Wu Y, Ma T, Yang M, Zhu X, Xia Y, Shi S, Chen L, Li H and Wu F 2023 Nat. Energy 8 800
[17] Cangaz S, Hippauf F, Reuter F S, Doerfler S, Abendroth T, Althues H and Kaskel S 2020 Adv. Energy Mater. 10 2001320
[18] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H and Kanno R 2016 Nat. Energy 1 16030
[19] Cao D, Ji T, Singh A, Bak S, Du Y, Xiao X, Xu H, Zhu J and Zhu H 2023 Adv. Energy Mater. 13 2203969
[20] Huo H, Jiang M, Bai Y, Ahmed S, Volz K, Hartmann H, Henss A, Singh C V, Raabe D and Janek J 2024 Nat. Mater. 23 543
[21] Son S B, Trevey J E, Roh H, Kim S H, Kim K B, Cho J S, Moon J T, DeLuca C M, Maute K K, Dunn M L, Han H N, Oh K H and Lee S H 2011 Adv. Energy Mater. 1 1199
[22] Huang Y, Shao B, Wang Y and Han F 2023 Energy Environ. Sci. 16 1569
[23] Trevey J, Jang J S, Jung Y S, Stoldt C R and Lee S H 2009 Electrochem. Commun. 11 1830
[24] Wang W and Kumta P N 2010 ACS Nano 4 2233
[25] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotechnol. 3 31
[26] Datta M K and Kumta P N 2009 J. Power Sources 194 1043
[27] Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A and Meng Y S 2019 ACS Energy Lett. 4 2418
[28] Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G and Janek J 2016 Chem. Mater. 28 2400
[29] Wenzel S, Leichtweiss T, Krüger D, Sann J and Janek J 2015 Solid State Ion. 278 98
[30] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[31] Zhu Y, He X and Mo Y 2016 J. Mater. Chem. A 4 3253
[32] Grundmann M 2021 The Physics of Semiconductors, An Introduction including Nanophysics and Applications 4th Edn. (Cham: Springer International Publishing)
[33] Fang C, Li J, Zhang M, Zhang Y, Yang F, Lee J Z, Lee M H, Alvarado J, Schroeder M A, Yang Y, Lu B, Williams N, Ceja M, Yang L, Cai M, Gu J, Xu K, Wang X and Meng Y S 2019 Nature 572 511
[34] Bao W, Fang C, Cheng D, Zhang Y, Lu B, Tan D H S, Shimizu R, Sreenarayanan B, Bai S, Li W, Zhang M and Meng Y S 2021 Cell Rep. Phys. Sci. 2 100597
[35] Han J, Li H, Kong D, Zhang C, Tao Y, Li H, Yang Q H and Chen L 2020 ACS Energy Lett. 5 1986
[36] Trevey J E, Rason K W, Stoldt C R and Lee S H 2010 Electrochem. Solid-State Lett. 13 A154
[37] Piper D M, Yersak T A and Lee S H 2013 J. Electrochem. Soc. 160 A77
[38] Asano T, Yubuchi S, Sakuda A, Hayashi A and Tatsumisago M 2017 J. Electrochem. Soc. 164 A3960
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Rehman G, Shafiq M, Saifullah, Ahmad R, Jalali-Asadabadi S, Maqbool M, Khan I, Rahnamaye-Aliabad H and Ahmad I 2016 J. Electron. Mater. 45 3314
[1] The effect of two-dimensional shear flow on the stability of a crystal interface in the supercooled melt
Cao Bin (曹斌), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东 ). Chin. Phys. B, 2012, 21(8): 086401.
[2] Linear stability analysis on a spherical particle growing from a binary melt under the far-field flow
Cao Bin(曹斌), Lin Xin(林鑫), Wang Meng(王猛), and Huang Wei-Dong(黄卫东) . Chin. Phys. B, 2012, 21(5): 056401.
No Suggested Reading articles found!