Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070602    DOI: 10.1088/1674-1056/ad4bc1
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Physics package based on intracavity laser cooling 87Rb atoms for space cold atom microwave clock

Siminda Deng(邓思敏达)1,2,3, Wei Ren(任伟)1,2,3,†, Jingfeng Xiang(项静峰)1,2, Jianbo Zhao(赵剑波)1,2, Lin Li(李琳)1,2,3, Di Zhang(张迪)1,2, Jinyin Wan(万金银)1,2,3, Yanling Meng(孟艳玲)1,2,3, Xiaojun Jiang(蒋小军)1,2, Tang Li(李唐)1,2,3, Liang Liu(刘亮)1,2,3, and Desheng Lü(吕德胜)1,2,3,‡
1 Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation, microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of $1.2 \times 10^{-12}$ $\tau^{-1/2}$ with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future.
Keywords:  atomic clock      microgravity      microwave cavity      space station      frequency stability  
Received:  18 April 2024      Revised:  06 May 2024      Accepted manuscript online:  15 May 2024
PACS:  06.30.Ft (Time and frequency)  
  91.10.Fc (Space and satellite geodesy; applications of global positioning systems)  
  43.58.Hp (Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
Fund: Project supported by the Space Application System of China Manned Space Program and the Youth Innovation Promotion Association, CAS.
Corresponding Authors:  Wei Ren, Desheng Lu     E-mail:  renweimiao87@siom.ac.cn;dslv@siom.ac.cn

Cite this article: 

Siminda Deng(邓思敏达), Wei Ren(任伟), Jingfeng Xiang(项静峰), Jianbo Zhao(赵剑波), Lin Li(李琳), Di Zhang(张迪), Jinyin Wan(万金银), Yanling Meng(孟艳玲), Xiaojun Jiang(蒋小军), Tang Li(李唐), Liang Liu(刘亮), and Desheng Lü(吕德胜) Physics package based on intracavity laser cooling 87Rb atoms for space cold atom microwave clock 2024 Chin. Phys. B 33 070602

[1] Safronova M S, Budker D, DeMille D, Derek F, Kimball J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[2] Lämmerzahl C, Ahlers G, Ashby N, Barmatz M, Biermann P L, Dittus H, Dohm V, Duncan R, Gibble K, Lipa J, Lockerbie N, Mulders N and Salomon C 2004 Gen. Relat. Gravit. 36 3
[3] Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T and Ely T A 2021 Nature 595 43
[4] Batori E, Almat N, Affolderbach C and Mileti G 2021 Adv. Space Res. 68 4723
[5] Arias E F, Matsakis D, Quinn T J and Tavella P 2018 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 65 898
[6] Guinot B and Arias E F 2005 Metrologia 42 S20
[7] Liu L, Lü D S, Chen W B, et al. 2018 Nat. Commun. 9 2760
[8] Lü D S, Ren W, Sun Y, Li T, Qu Q Z, Wang B, Li L, Zhao J B, Zhao X, Ji J W, Ye M F, Xiang J F, Chen W B, Wang Y Z and Liu L 2023 Natl. Sci. Rev. 10 nwac180
[9] Ren W, Li T, Qu Q Z, Wang B, Li L, Lü D S, Chen W B and Liu L 2020 Natl. Sci. Rev. 7 12
[10] Laurent P, Massonnet D, Cacciapuoti L and Salomon C 2015 Comptes Rendus. Phys. 16 540
[11] Cacciapuoti L, Armano M, Much R, et al. 2020 Eur. Phys. J. D 74 164
[12] Alonso I, Alpigiani C, Altschul B, et al. 2022 Epj Quantum. Technol. 9 30
[13] Lu Z T, Corwin K L, Renn M J, Anderson M H, Cornell E A and Wieman C E 1996 Phys. Rev. Lett. 77 16
[14] Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 6 11
[15] Wynands R and Weyers S 2005 Metrologia 42 S64
[16] Lü D S, Peng X K, Ren W, Qu Q Z, Li T and Liu L 2017 Proceedings of the Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) July 9-13, 2017, Besancon, France p. 623
[17] Liu P, Meng Y L, Wan J Y, Wang X M, Wang Y N, Xiao L, Cheng H D and Liu L 2015 Phys. Rev. A 92 062101
[18] Esnault F X, Holleville D, Rossetto N, Guerandel S and Dimarcq N 2010 Phys. Rev. A 82 033436
[19] Müller S T, Magalhães D V, Alves R F and Bagnato V S 2011 J. Opt. Soc. Am. B 28 2592
[20] Lee S, Choi G W, Hong H G, Kwon T Y, Lee S B, Heo M S and Park S E 2021 Appl. Phys. Lett. 119 064002
[21] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[22] Ren W, Xiang J F, Zhang Y T, Wang B, Qu Q Z, Zhao J B, Ye M F, Lü D S and Liu L 2015 Vacuum 116 54
[23] Li R X and Gibble K 2004 Metrologia 41 376
[24] Li R X and Gibble K 2010 Metrologia 47 534
[25] Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[26] Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45 4
[1] A pressure-sensitive rheological origin of high friction angles of granular matter observed in NASA-MGM project
Xiaohui Cheng(程晓辉), Shize Xiao(肖世泽), Sen Yang(杨森), Naifeng Zhao(赵乃峰), and Alex Sixie Cao. Chin. Phys. B, 2024, 33(6): 068301.
[2] High-frequency microwave cavity design for high-mass dark matter axion searches
Chi Zhang(张驰), Jia Wang(王佳), Chunguang Li(李春光), Shiguang Chen(陈石广), Hang Cheng(程航), Liang Sun(孙亮), and Yun Wu(吴云). Chin. Phys. B, 2024, 33(5): 054211.
[3] A Yb optical clock with a lattice power enhancement cavity
Chunyun Wang(王春云), Yuan Yao(姚远), Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义). Chin. Phys. B, 2024, 33(3): 030601.
[4] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[5] Monte Carlo calculation of the exposure of Chinese female astronauts to earth's trapped radiation on board the Chinese Space Station
Yipan Guo(郭义盼), Fazhi Yan(闫发智), Meihua Fang(方美华),Zhao Zhang(张昭), Wei Cheng(成巍), and Bing Guo(郭兵). Chin. Phys. B, 2023, 32(7): 079401.
[6] A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 110704.
[7] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[8] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[9] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[10] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[11] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[12] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[13] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[14] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[15] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
No Suggested Reading articles found!