PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Spectral characteristics of laser-plasma instabilities with a broadband laser |
Guo-Xiao Xu(许国潇)1,4, Ning Kang(康宁)1,†, An-Le Lei(雷安乐)2,‡, Hui-Ya Liu(刘会亚)1, Yao Zhao(赵耀)3, Shen-Lei Zhou(周申蕾)1, Hong-Hai An(安红海)2, Jun Xiong(熊俊)2, Rui-Rong Wang(王瑞荣)2, Zhi-Yong Xie(谢志勇)2, Xi-Chen Zhou(周熙晨)2, Zhi-Heng Fang(方智恒)2, and Wei Wang(王伟)2 |
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China; 3 School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Recent experimental progresses regarding broadband laser-plasma instabilities (LPIs) show that a 0.6% laser bandwidth can reduce backscatters of the stimulated Brillouin scattering (SBS) and the stimulated Raman scattering (SRS) at normal incidence [Phys. Rev. Lett. 132 035102 (2024)]. In this paper, we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs, in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence. SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser, which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth. SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case, which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas. The three-halves harmonic emission (3$\omega /2$) has a one-peak spectral distribution under the broadband condition, which is different from the two-peak distribution under the narrowband condition, and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.
|
Received: 05 March 2024
Revised: 10 April 2024
Accepted manuscript online:
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.57.-z
|
(Laser inertial confinement)
|
|
52.38.Bv
|
(Rayleigh scattering; stimulated Brillouin and Raman scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11905280). |
Corresponding Authors:
Ning Kang, An-Le Lei
E-mail: kangning@siom.ac.cn;lal@siom.ac.cn
|
Cite this article:
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟) Spectral characteristics of laser-plasma instabilities with a broadband laser 2024 Chin. Phys. B 33 085204
|
[1] Nuckolls J, Thiessen A, Wood L and Zimmerman G 1972 Nature 239 139 [2] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C and Zuegel J D 2015 Phys. Plasmas 22 110501 [3] Rosenbluth M N, White R B and Liu C S 1973 Phys. Rev. Lett. 31 1190 [4] Kruer W 2003 The Physics of Laser Plasma Interactions (Boca Raton: CRC Press) pp. 73-94 [5] Yan R, Ren C, Li J, Maximov A V, Mori W B, Sheng Z M and Tsung F S 2012 Phys. Rev. Lett. 108 175002 [6] Igumenshchev I V, Seka W, Edgell D H, Michel D T, Froula D H, Goncharov V N, Craxton R S, Divol L, Epstein R, Follett R, Kelly J H, Kosc T Z, Maximov A V, McCrory R L, Meyerhofer D D, Michel P, Myatt J F, Sangster T C, Shvydky A, Skupsky S and Stoeckl C 2012 Phys. Plasmas 19 056314 [7] Laval G, Pellat R, Pesme D, Ramani A, Rosenbluth M N and Williams E A 1977 Phys. Fluids 20 2049 [8] Thomson J J and Karush J I 1974 Phys. Fluids 17 1608 [9] Obenschain S P, Luhmann N C and Greiling P T 1976 Phys. Rev. Lett. 36 1309 [10] Mostovych A N, Obenschain S P, Gardner J H, Grun J, Kearney K J, Manka C K, McLean E A and Pawley C J 1987 Phys. Rev. Lett. 59 1193 [11] Bates J W, Myatt J F, Shaw J G, Follett R K, Weaver J L, Lehmberg R H and Obenschain S P 2018 Phys. Rev. E 97 061202 [12] Marozas J A, Hohenberger M, Rosenberg M J, Turnbull D, Collins T J B, Radha P B, McKenty P W, Zuegel J D, Marshall F J, Regan S P, Sangster T C, Seka W, Campbell E M, Goncharov V N, Bowers M W, Di Nicola J M G, Erbert G, MacGowan B J, Pelz L J and Yang S T 2018 Phys. Rev. Lett. 120 085001 [13] Lu L 1989 Phys. Fluids B 1 1605 [14] Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z and Zhang J 2017 Phys. Plasmas 24 112102 [15] Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W and Froula D H 2018 Phys. Rev. Lett. 120 135005 [16] Guzdar P N, Liu C S and Lehmberg R H 1993 Phys. Fluids B 5 910 [17] Weaver J, Lehmberg R, Obenschain S, Kehne D and Wolford M 2017 Appl. Opt. 56 8618 [18] Obenschain S P, Schmitt A J, Bates J W, Wolford M F, Myers M C, McGeoch M W, Karasik M and Weaver J L 2020 Philos. Trans. R. Soc. A 378 20200031 [19] Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J, Shi H, Du P, Liu J, Li X, Wang T, Zhang T, Shan C, Hua Y, Ma W, Sun X, Chen X, Huang X, Zhu J, Pei W, Sui Z and Fu S 2020 Matter Radiat. Extremes 5 065201 [20] Zhou H Y, Xiao C Z, Zou D B, Li X Z, Yin Y, Shao F Q and Zhuo H B 2018 Phys. Plasmas 25 062703 [21] Ma H H, Li X F, Weng S M, Yew S H, Kawata S, Gibbon P, Sheng Z M and Zhang J 2021 Matter Radiat. Extremes 6 055902 [22] Yi S Y, Zhou H Y, Jiao J L, Wang H Z, Yan R, Zhang P D and Yin Y 2023 Plasma Phys. Controlled Fusion 65 065005 [23] Wen H, Follett R K, Maximov A V, Froula D H, Tsung F S and Palastro J P 2021 Phys. Plasmas 28 042109 [24] Seaton A G, Yin L, Follett R K, Albright B J and Le A 2022 Phys. Plasmas 29 042707 [25] Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H and Palastro J P 2019 Phys. Plasmas 26 062111 [26] Follett R K, Shaw J G, Myatt J F, Wen H, Froula D H and Palastro J P 2021 Phys. Plasmas 28 032103 [27] Liu Q K, Zhang E H, Zhang W S, Cai H B, Gao Y Q, Wang Q and Zhu S P 2022 Phys. Plasmas 29 102105 [28] Gao Y, Ji L, Zhao X, Cui Y, Rao D, Feng W, Xia L, Liu D, Wang T, Shi H, Li F, Liu J, Du P, Li X, Liu J, Zhang T, Shan C, Hua Y, Ma W, Sui Z, Zhu J, Pei W, Fu S, Sun X and Chen X 2020 Opt. Lett. 45 6839 [29] Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X and Fu S 2024 Phys. Rev. Lett. 132 035102 [30] Cui Y, Gao Y, Rao D, Liu D, Li F, Ji L, Shi H, Liu J, Zhao X, Feng W, Xia L, Liu J, Li X, Wang T, Ma W and Sui Z 2019 Opt. Lett. 44 2859 [31] Ji L, Zhao X, Liu D, Gao Y, Cui Y, Rao D, Feng W, Li F, Shi H, Liu J, Li X, Xia L, Wang T, Liu J, Du P, Sun X, Ma W, Sui Z and Chen X 2019 Opt. Lett. 44 4359 [32] Follett R K, Colaitis A, Seaton A G, Wen H, Turnbull D, Froula D H and Palastro J P 2023 Phys. Plasmas 30 042102 [33] Edgell D H, Follett R K, Igumenshchev I V, Myatt J F, Shaw J G and Froula D H 2017 Phys. Plasmas 24 062706 [34] Williams E A, Berger R L, Drake R P, Rubenchik A M, Bauer B S, Meyerhofer D D, Gaeris A C and Johnston T W 1995 Phys. Plasmas 2 129 [35] Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W and Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273 [36] Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A and Weide K 2009 Parallel Comput. 35 512 [37] Delettrez J 1986 Can. J. Phys. 64 932 [38] Smalyuk V A, Hu S X, Goncharov V N, Meyerhofer D D, Sangster T C, Stoeckl C and Yaakobi B 2008 Phys. Plasmas 15 082703 [39] Kang N, Liu H Y, Zhao Y, Ji S Z, Zhou S L and Lei A L 2020 Plasma Phys. Controlled Fusion 62 055007 [40] Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A and Labaune C 1996 Phys. Plasmas 3 1728 [41] Seka W, Edgell D H, Myatt J F, Maximov A V, Short R W, Goncharov V N and Baldis H A 2009 Phys. Plasmas 16 052701 [42] Kang N, Liu H, Lin Z, Lei A, Zhou S, Fang Z, An H, Li K and Fan W 2017 Plasma Phys. Controlled Fusion 59 105011 [43] Michel P 2023 Introduction to Laser-Plasma Interactions (Gewerbestrasse: Springer Nature Switzerland AG) pp. 293-296 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|