Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 018703    DOI: 10.1088/1674-1056/ad8b37
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

A physical memristor model for Pavlovian associative memory

Jiale Lu(卢家乐)†, Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangong Zhou(周广东)‡, and Xiaofang Hu(胡小方)§
College of Artificial Intelligence, Southwest University, Chongqing 400712, China
Abstract  Brain-inspired intelligence is considered to be a computational model with the most promising potential to overcome the shortcomings of the von Neumann architecture, making it a current research hotspot. Due to advantages such as nonvolatility, high density, low power consumption, and high response ratio, memristors are regarded as devices with promising applications in brain-inspired intelligence. This paper proposes a physical Ag/HfO$_{x}$/FeO$_{x}$/Pt memristor model. The Ag/HfO$_{x}$/FeO$_{x}$/Pt memristor is first fabricated using magnetron sputtering, and its internal principles and characteristics are then thoroughly analyzed. Furthermore, we construct a corresponding physical memristor model which achieves a simulation accuracy of up to 99.72% for the physical memristor. We design a fully functional Pavlovian associative memory circuit, realizing functions including generalization, primary differentiation, secondary differentiation, and forgetting. Finally, the circuit is validated through PSPICE simulation and analysis.
Keywords:  memristor model      Pavlovian associative memory circuit      secondary differentiation  
Received:  09 September 2024      Revised:  21 October 2024      Accepted manuscript online:  25 October 2024
PACS:  87.19.lv (Learning and memory)  
  84.30.Bv (Circuit theory)  
  84.30.-r (Electronic circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62476230 and 61976246), the Natural Science Foundation of Chongqing (Grant No. CSTB2023NSCQ-MSX0018), and Fundamental Research Funds for the Central Universities (Grant No. SWUKR22046).
Corresponding Authors:  Jiale Lu, Guangong Zhou, Xiaofang Hu     E-mail:  krislu_111@163.com;zhougd@swu.edu.cn;huxf@swu.edu.cn

Cite this article: 

Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangong Zhou(周广东), and Xiaofang Hu(胡小方) A physical memristor model for Pavlovian associative memory 2025 Chin. Phys. B 34 018703

[1] Shaafiee M, Logeswaran R and Seddon A 2017 Proceedings of the 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, August 2-6, 2017, Noida, India, p. 199
[2] Petrenko S 2018 Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian Federation (Cham: Springer International Publishing) pp.115-173
[3] Xue S 2021 International Core Journal of Engineering 7 330
[4] Neftci E O 2018 iScience 5 52
[5] Roy K, Jaiswal A and Panda P 2019 Nature 575 607
[6] Shastri B J, Tait A N, Ferreira de Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Nat. Photonics 15 102
[7] Bartolozzi C, Indiveri G and Donati E 2022 Nat. Commun. 13 1024
[8] Shao N, Zhang S B and Shao S Y 2019 Acta Phys. Sin. 68 018501
[9] Zhu L J, Wang F Q 2019 Acta Phys. Sin. 68 198501 (in Chinese)
[10] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[11] Zhou G, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, et al. 2021 Advanced Science 8 2003765
[12] Abunahla H and Mohammad B 2018 Memristor Technology: Synthesis and Modeling for Sensing and Security Applications (Cham: Springer International Publishing) pp. 1-29
[13] Muhammad N M, Duraisamy N, Rahman K, Dang H W, Jo J D and Choi K H 2013 Curr. Appl. Phys. 13 90
[14] Zhang W G, Gao H, Deng C S, Lv T, Hu S L, Wu H, Xue S Y, Tao Y F, Deng L M and Xiong W 2021 Nanoscale 13 11497
[15] Li M C, Wu E X, Xu L Y, Hu X D, Miao X P and Liu J 2023 Phys. Status Solidi A 220 2300204
[16] Zhu W Y, Pu Y F, Liu B, Yu B and Zhou J L 2022 Chin. Phys. B 31 060204
[17] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[18] Biolek Z, Biolek D and Biolkova V 2009 Radioengineering 18 2
[19] SumaLata G L and Shrivastava A K 2021 Cognitive Informatics and Soft Computing (Singapore: Springer Nature Singapore) pp. 403-428
[20] Kvatinsky S, Friedman E G, Kolodny A and Weiser U C 2013 IEEE Trans. Circuits Syst. I: Regular Papers 60 211
[21] Kvatinsky S, Ramadan M, Friedman E G and Kolodny A 2015 IEEE Trans. Circuits Syst. II: Express Briefs 62 786
[22] Yakopcic C, Taha T M, Mountain D J, Salter T, Marinella M J and McLean M 2020 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 1084
[23] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Rogers S 2011 IEEE Electron Device Lett. 32 1436
[24] Ji X, Dong Z, Lai C S, Zhou G and Qi D 2022 Mater. Today Adv. 16 100293
[25] Konlechner R, Allagui A, Antonov V N and Yudin D 2023 Physica A 614 128555
[26] Akgül F D, Eymur S, Akın Ü, Yüksel Ö F, Karadeniz H and Tuǧluoǧlu N 2021 J. Mater. Sci. Mater. Electron. 32 15857
[27] Yuan J S and Liou J J 2013 Semiconductor Device Physics and Simulation (Springer Science & Business Media)
[28] Chen L, Li C and Chen Y 2018 Int. J. Bifurcation Chaos 28 1850080
[29] Ziegler M, Soni R, Patelczyk T, Ignatov M, Bartsch T, Meuffels P and Kohlstedt H 2012 Adv. Funct. Mater. 22 2744
[30] Li Y, Xu L, Zhong Y P, Zhou Y X, Zhong S J, Hu Y Z, Chua L O and Miao X S 2015 Adv. Electron. Mater. 1 1500125
[31] Shang M and Wang X 2020 Neurocomputing 389 18
[32] Dong Z, Qian Z, Zhou G, Ji X, Qi D and Lai J 2022 J. Electron. Inf. Technol. 44 2080
[33] Sun J, Wang Y, Liu P, Wen S and Wang Y 2023 IEEE Trans. Cybernetics 53 3351
[1] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[2] A phenomenological memristor model for synaptic memory and learning behaviors
Nan Shao(邵楠), Sheng-Bing Zhang(张盛兵), Shu-Yuan Shao(邵舒渊). Chin. Phys. B, 2017, 26(11): 118501.
No Suggested Reading articles found!