PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Observation of Weibel magnetic fields in laser-produced interpenetrating flows |
Chuanqi Shi(施川奇)1, Dawei Yuan(袁大伟)1,2,†, Wei Sun(孙伟)2,3, Yapeng Zhang(张雅芃)2,4, Zhijie Qiu(邱志杰)5, Huigang Wei(魏会冈)1, Zhe Zhang(张喆)5, Xiaohui Yuan(远晓辉)6, and Gang Zhao(赵刚)1,7,‡ |
1 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 2 Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China; 3 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China; 4 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; 5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 6 Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 7 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China |
|
|
Abstract Weibel instability is a promising candidate mechanism for collisionless shock formation in astrophysical systems. Capturing the underlying physics of Weibel instability will help us to understand the astrophysical shock formation, magnetic field generation and amplification, particle acceleration, and so on. Laboratory astrophysics, provides a new way to study these microphysics in controlled conditions. At Shenguang-II laser facility, the interpenetrating plasma flows are generated by eight laser beams irradiating a pair of opposing foils to mimic the supernova explosion and the ejecta sweeping up the surrounding medium. Evolution of collisionless interpenetrating plasma flows is observed using optical diagnostics. Filamentary structures appear in the interaction region and the associated magnetic strength is measured about 40 T. Theoretical analysis and simulations indicate that these characteristics are induced by nonlinear Weibel instability.
|
Received: 01 October 2024
Revised: 14 November 2024
Accepted manuscript online: 20 November 2024
|
PACS:
|
52.35.-g
|
(Waves, oscillations, and instabilities in plasmas and intense beams)
|
|
52.35.Qz
|
(Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))
|
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
Fund: We thank the staff of the Shengguang-II laser facility. Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1603200 and 2022YFA1603204), the Fund from the Chinese Academy of Sciences Youth Interdisciplinary Team (Grant No. JCTD-2022-05), the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11873061 and 12473099), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030500, XDA25010100, and XDA25030200). |
Corresponding Authors:
Dawei Yuan, Gang Zhao
E-mail: dwyuan@bao.ac.cn;gzhao@nao.cas.cn
|
Cite this article:
Chuanqi Shi(施川奇), Dawei Yuan(袁大伟), Wei Sun(孙伟), Yapeng Zhang(张雅芃), Zhijie Qiu(邱志杰), Huigang Wei(魏会冈), Zhe Zhang(张喆), Xiaohui Yuan(远晓辉), and Gang Zhao(赵刚) Observation of Weibel magnetic fields in laser-produced interpenetrating flows 2025 Chin. Phys. B 34 015203
|
[1] Medvedev M V 2007 Astrophys. Space Sci. 307 245 [2] Jikei T, Amano T and Matsumoto Y 2024 Astrophys. J. 961 157 [3] Bohdan A, Pohl M, Niemiec J, Vafin S, Matsumoto Y, Amano T and Hoshino M 2020 Astrophys. J. 893 6 [4] Bamba A, Yamazaki R, UenoMand Koyama K 2003 Astrophys. J. 589 827 [5] Meier P, Glassmeier K H and Motschmann U 2016 Ann. Geophys. 34 691 [6] Lyubarsky Y and Eichler D 2006 Astrophys. J. 647 1250 [7] Nishikawa K I, Hardee P E, Hededal C B and Fishman G J 2006 Astrophys. J. 642 1267 [8] Nishikawa K I, Hededal C B, Hardee P E, Fishman G J, Kouveliotou C and Mizuno Y 2007 Astrophys. Space Sci. 307 319 [9] Medvedev M V, Silva L O and Kamionkowski M 2006 Astrophys. J. 642 L1 [10] Ryutov D, Drake R P, Kane J, Liang E, Remington B A and Wood- Vasey W M 1999 Astrophys. J. 518 821 [11] Remington B A, Arnett D, Paul R, Drake R P and Takabe H 1999 Science 284 1488 [12] Takabe H, Kato T N, Sakawa Y, et al. 2008 Plasma Phys. Control. Fusion 50 124057 [13] Ahmed H, Dieckmann M E, Romagnani L, Doria D, Sarri G, Cerchez M, Ianni E, Kourakis I, Giesecke A L, Notley M, Prasad R, Quinn K, Willi O and Borghesi M 2013 Phys. Rev. Lett. 110 205001 [14] Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T and Willi O 2008 Phys. Rev. Lett. 110 025044 [15] Morita T, Sakawa Y, Kuramitsu Y, Dono S, Aoki H, Tanji H, Kato T N, Li Y T, Zhang Y, Liu X, Zhong J Y, Takabe H and Zhang J 2010 Phys. Plasmas 17 122702 [16] Kuramitsu Y, Sakawa Y, Morita T, Gregory C D, Waugh J N, Dono S, Aoki H, Tanji H, Koenig M, Woolsey N and Takabe H 2011 Phys. Rev. Lett. 106 175002 [17] Yuan D W, Li Y T, Liu M, et al. 2017 Sci. Rep. 7 42915 [18] Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X and Nilson P M 2013 Phys. Rev. Lett. 111 225002 [19] Park H S, Huntington C M, Fiuza F, et al. 2015 Phys. Plasmas 22 056311 [20] Yuan D W, Lei Z, Wei, H G, Zhang Z, Zhong J Y, Li Y F, Ping Y L, Zhang Y H, Li Y T, Wang F L, Liang G Y, Qiao B, Fu C B, Liu H Y, Zhang P Z, Zhu J Q, Zhao G and Zhang J 2024 Nat. Commun. 15 5897 [21] Manuel M J E, Adams M B P, Ghosh S, Beg F N, Bolaños S, Huntington C M, Jonnalagadda R, Kawahito D, Pollock B B, Remington B A, Ross J S, Ryutov D D, Sio H, Swadling G F, Tzeferacos P and Park H S 2022 Phys. Rev. E 106 055205 [22] Spitzer L and Seeger R J 1963 Am. J. Phys. 31 890 [23] Kato T N and Takabe H 2010 Phys. Plasmas 17 032114 [24] Kato T N 2005 Phys. Plasmas 12 080705 [25] Ruyer C, Gremillet L, Debayle A and Bonnaud G 2015 Phys. Plasmas 22 032102 [26] Park H S, Ryutov D D, Ross J S, et al. 2012 High Energy Density Phys. 8 38 [27] Fonseca R A, Silva L O, Tsung F S, Decyk V K, LuW, Ren C, MoriW B, Deng S, Lee S, Katsouleas T and Adam J C 2002 Lect. Notes Comp. Sci. 2331 342 [28] Ryutov D D, Kugland N L, Park H S, Plechaty C, Remington B A and Ross J S 2012 Plasma Phys. Control. Fusion 54 105021 [29] Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|