|
|
A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock |
Ruo-Shui Han(韩弱水)1,2, Wei Wang(王伟)1,2,†, and Tao Wang(汪涛)1,2,3,‡ |
1 Department of Physics, and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China; 2 Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China; 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Infrared signal detection is widely used in many fields. Due to the detection principle, however, the accuracy and range of detection are limited. Thanks to the ultra stability of the 87Sr optical lattice clock, external infrared electromagnetic wave disturbances can be responded to. Utilizing the ac Stark shift of the clock transition, we propose a new method to detect infrared signals. According to our calculations, the theoretical detection accuracy in the vicinity of its resonance band of 2.6 μm can reach the order of 10-14 W, while the minimum detectable signal of common detectors is on the order of 10-10 W.
|
Received: 13 October 2023
Revised: 29 December 2023
Accepted manuscript online: 05 January 2024
|
PACS:
|
32.30.Bv
|
(Radio-frequency, microwave, and infrared spectra)
|
|
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
|
06.30.Ft
|
(Time and frequency)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274045). |
Corresponding Authors:
Wei Wang, Tao Wang
E-mail: weiwangphys@163.com;tauwaang@cqu.edu.cn
|
Cite this article:
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛) A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock 2024 Chin. Phys. B 33 043201
|
[1] Rogalski A 2011 Infrared detectors 2nd edn. (Boca Raton:Taylor & Francis) [2] Dautcour G and Wallis G 1968 Fortschritte Der Physik 16 545 [3] Coates J P 1996 Appl. Spectrosc. Rev. 31 179 [4] Rogalski A 2012 Opto-Electron. Rev. 20 279 [5] Rogalski A 2002 Infrared Phys. Technol. 43 187 [6] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [7] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 [8] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 [9] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185 [10] Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett. 116 063001 [11] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 [12] Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Baillard X, Fouché M, Le Targat R, Brusch A, Lemonde P, Takamoto M, Hong F L, Katori H and Flambaum V V 2008 Phys. Rev. Lett. 100 140801 [13] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801 [14] Huntemann N, Lipphardt B, Tamm Chr, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802 [15] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043 [16] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933 [17] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [18] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630 [19] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701 [20] Targat R L, Lorini L, Coq Y L, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P and Lodewyck J 2013 Nat. Commun. 4 2109 [21] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Miranda M H G de, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Coq Y L, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 5871 [22] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108 090801 [23] Madej A A, Dubé M, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002 [24] Safronova M S, Kozlov M G and Clark C W 2012 IEEE Trans. Ultr. Ferr. Freq. Control 59 439 [25] Li T, Lu X T, Zhang Q, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 093701 (in Chinese) [26] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703 [27] Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J and Chang H 2023 Metrologia 60 015008 [28] Wang Y B, Lu X T, Lu B Q, Kong D H and Chang H 2018 Appl. Sci. 8 2194 [29] Lu X T, Yin M J, Li T, Wang Y B and Chang H 2020 Appl. Sci. 10 1440 [30] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|