CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Theoretical insights into the structures and fundamental properties of pnictogen nitrides |
Jingjing Wang(王晶晶), Panlong Kong(孔攀龙)†, Dingmei Zhang(张定梅), Defang Gao(高德芳), Zaifu Jiang(蒋再富)‡, and Wei Dai(戴伟)§ |
School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China |
|
|
Abstract Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure, yielding crystalline antimony nitride (Sb$_{3}$N$_{5}$) with an orthorhombic structure. Motivated by this statement, we calculate the stability, elastic properties, electronic properties and energy density of the $Cmc2_{1}$ structure for pnictogen nitrides $X_{3}$N$_{5}$ ($X=$ P, As, Sb, and Bi) using first-principles calculations combined with particle swarm optimization algorithms. Calculations of formation enthalpies, elastic constants and phonon spectra show that P$_{3}$N$_{5}$, As$_{3}$N$_{5}$ and Sb$_{3}$N$_{5}$ are thermodynamically, mechanically and kinetically stable at 35 GPa, whereas Bi$_{3}$N$_{5}$ is mechanically and kinetically stable but thermodynamically unstable. The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds, confirmed by the calculated electronic localization function. We also calculate the energy densities for Sb$_{3}$N$_{5}$ and find it to be a potentially high-energy-density material.
|
Received: 04 May 2024
Revised: 20 July 2024
Accepted manuscript online: 01 August 2024
|
PACS:
|
62.20.-x
|
(Mechanical properties of solids)
|
|
63.20.dk
|
(First-principles theory)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
31.15.E-
|
|
|
Fund: This work was supported by the Young Talent Project of the Scientific Research Plan by the Hubei Provincial Department of Education (Grant No. Q20234301), the Guiding Project of the Scientific Research Plan by the Hubei Provincial Department of Education (Grant No. B2023222), the Natural Science Foundation of Hubei Province (Grant No. 2022CFB527), the Scientific Research Project of Jingchu University of Technology (Grant Nos. YY202401,YY202409, YY202207, and YB202212), and the Open Research Projects of Jingchu University of Technology (Grant No. HX20240009). |
Corresponding Authors:
Panlong Kong, Zaifu Jiang, Wei Dai
E-mail: panlkong@163.com;13986995705@163.com;daiweiphysics@163.com
|
Cite this article:
Jingjing Wang(王晶晶), Panlong Kong(孔攀龙), Dingmei Zhang(张定梅), Defang Gao(高德芳), Zaifu Jiang(蒋再富), and Wei Dai(戴伟) Theoretical insights into the structures and fundamental properties of pnictogen nitrides 2024 Chin. Phys. B 33 096201
|
[1] Miao M S, Sun Y H, Zurek E and Lin H Q 2020 Nat. Rev. Chem. 4 508 [2] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L and Mao H K 2020 Sci. Adv. 6 eaba9206 [3] Laniel D, Geneste G, Weck G, Mezouar M and Loubeyre P 2019 Phys. Rev. Lett. 122 066001 [4] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005 [5] Christe K O, Wilson W W, Sheehy J A and Boatz J A 1999 Angew. Chem. Int. Ed. 38 2004 [6] Zhang J, Zeng Z, Lin H Q and Li Y L 2014 Sci. Rep. 4 4358 [7] Zhang S T, Zhao Z Y, Liu L L and Yang G C 2017 J. Power Sources 365 155 [8] Yu S Y, Huang B W, Zeng Q F, Oganov A R, Zhang L T and Frapper G 2017 J. Phys. Chem. C 121 11037 [9] Wei S L, Li D, Liu Z, Wang W J, Tian F B, Bao K, Duan D F, Liu B B and Cui T 2017 J. Phys. Chem. C 121 9766 [10] Holtgrewe N, Lobanov S S, Mahmood M F and Goncharov A F 2016 J. Phys. Chem. C 120 28176 [11] Liu Z, Li D, Wei S L, Wang W J, Tian F B, Bao K, Duan D F, Yu H Y, Liu B B and Cui T 2017 Inorg. Chem. 56 7494 [12] Lian L L, Liu Y, Li D and Wei S L 2020 RSC Adv. 10 2448 [13] Li Y W, Hao J, Liu H Y, Lu S Y and Tse J S 2015 Phys. Rev. Lett. 115 105502 [14] Yin K T, Wang Y C, Liu H Y, Peng F and Zhang L J 2015 J. Mater. Chem. A 3 4188 [15] Xia K, Sun J, Pickard C J, Klug D D and Needs R J 2017 Phys. Rev. B 95 144102 [16] Li D, Tian F B, Lv Y Z, Wei S L, Duan D F, Liu B B and Cui T 2017 J. Phys. Chem. C 121 1515 [17] Steele B A and Oleynik I I 2017 J. Phys. Chem. A 121 1808 [18] Batyrev I G 2017 J. Phys. Chem. A 121 638 [19] Ceppatelli M, Scelta D, Serrano-Ruiz M, Dziubek K, Morana M, Svitlyk V, Garbarino G, Poreba T, Mezouar M, Peruzzini M and Bini R 2022 Angew. Chem. Int. Ed. 61 e202114191 [20] Ceppatelli M, Serrano-Ruiz M, Morana M, Dziubek K, Scelta D, Garbarino G, Poreba T, Mezouar M, Bini R and Peruzzini M 2024 Angew. Chem. Int. Ed. 63 e202319278 [21] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 [22] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 [23] Shao X C, Lv J, Liu P, Shao S, Gao P Y, Liu H Y, Wang Y C and Ma Y M 2022 J. Chem. Phys. 156 014105 [24] Duan Q, Shen J, Zhong X, Lu H and Lu C 2022 Phys. Rev. B 105 214503 [25] Sun W, Chen B, Li X, Peng F, Hermann A and Lu C 2023 Phys. Rev. B 107 214511 [26] Lu C, Cui C, Zuo J, Zhong H, He S, Dai W and Zhong X 2023 Phys. Rev. B 108 205427 [27] Duan Q, Zhan L, Shen J, Zhong X and Lu C 2024 Phys. Rev. B 109 054505 [28] Zuo J, Zhang L, Chen B, He K, Dai W, Ding K and Lu C 2024 J. Phys.: Condens. Matter 36 015302 [29] Chen B, He K, Dai W, Gutsev G L and Lu C 2023 J. Phys.: Condens. Matter 35 183002 [30] Tong Q, Lv J, Gao P and Wang Y 2019 Chin. Phys. B 28 106105 [31] Jin Y Y, Zhang J Q, Ling S, Wang Y Q, Li S, Kuang F G, Wu Z Y and Zhang C Z 2022 Chin. Phys. B 31 116104 [32] Wang Y Q, Zhang C Z, Zhang J Q, Li S, Ju M, Sun W G, Dou X L and Jin Y Y 2023 Chin. Phys. B 32 097402 [33] Wang Y, Cui X, Liu J, Jing Q, Duan H and Cao H 2023 Chin. Phys. B 33 016109 [34] Guo S T, Xu Z Z, Geng Y L, Rui Q, Du D C, Li J F and Wang X L 2023 Chin. Phys. B 32 126202 [35] Liu P, Xu M, Lv J, Gao P, Huang C, Li Y, Wang J, Wang Y and Zhou M 2022 Chin. Phys. B 31 106104 [36] Pu C Y, Yu R M, Wang T, Xüe Z Y, Zhu Y S and Zhou D W 2021 Chin. Phys. B 30 017102 [37] Blöchl P E 1994 Phys. Rev. B 50 17953 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [40] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [41] Yin M T, and Cohen M L 1982 Phys. Rev. B 26 3259 [42] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [43] Hill R 1952 Proc. Phys. Soc. London A 65 349 [44] Zhang J, Wang Y, Tang L, Duan J, Wang J, Li S, Ju M, Sun W, Jin Y and Zhang C 2022 Arabian J. Chem. 15 104347 [45] Haines J, Léger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1 [46] Li D, Tian F, Duan D, Bao K, Chu B, Sha X, Liu B and Cui T 2014 RSC Adv. 4 10133 [47] Wang J J, Hermann A, Kuang X Y, Jin Y Y, Lu C, Zhang C Z, Ju M, Si M T and Iitaka T 2015 RSC Adv. 5 53497 [48] Evans W J, Lipp M J, Yoo C S, Cynn H, Herberg J L, Maxwell R S and Nicol M F 2006 Chem. Mater. 18 2520 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|