Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096201    DOI: 10.1088/1674-1056/ad6a07
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical insights into the structures and fundamental properties of pnictogen nitrides

Jingjing Wang(王晶晶), Panlong Kong(孔攀龙)†, Dingmei Zhang(张定梅), Defang Gao(高德芳), Zaifu Jiang(蒋再富)‡, and Wei Dai(戴伟)§
School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China
Abstract  Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure, yielding crystalline antimony nitride (Sb$_{3}$N$_{5}$) with an orthorhombic structure. Motivated by this statement, we calculate the stability, elastic properties, electronic properties and energy density of the $Cmc2_{1}$ structure for pnictogen nitrides $X_{3}$N$_{5}$ ($X=$ P, As, Sb, and Bi) using first-principles calculations combined with particle swarm optimization algorithms. Calculations of formation enthalpies, elastic constants and phonon spectra show that P$_{3}$N$_{5}$, As$_{3}$N$_{5}$ and Sb$_{3}$N$_{5}$ are thermodynamically, mechanically and kinetically stable at 35 GPa, whereas Bi$_{3}$N$_{5}$ is mechanically and kinetically stable but thermodynamically unstable. The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds, confirmed by the calculated electronic localization function. We also calculate the energy densities for Sb$_{3}$N$_{5}$ and find it to be a potentially high-energy-density material.
Keywords:  pnictogen nitrides      structural stability      electronic property      energy density  
Received:  04 May 2024      Revised:  20 July 2024      Accepted manuscript online:  01 August 2024
PACS:  62.20.-x (Mechanical properties of solids)  
  63.20.dk (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  31.15.E-  
Fund: This work was supported by the Young Talent Project of the Scientific Research Plan by the Hubei Provincial Department of Education (Grant No. Q20234301), the Guiding Project of the Scientific Research Plan by the Hubei Provincial Department of Education (Grant No. B2023222), the Natural Science Foundation of Hubei Province (Grant No. 2022CFB527), the Scientific Research Project of Jingchu University of Technology (Grant Nos. YY202401,YY202409, YY202207, and YB202212), and the Open Research Projects of Jingchu University of Technology (Grant No. HX20240009).
Corresponding Authors:  Panlong Kong, Zaifu Jiang, Wei Dai     E-mail:  panlkong@163.com;13986995705@163.com;daiweiphysics@163.com

Cite this article: 

Jingjing Wang(王晶晶), Panlong Kong(孔攀龙), Dingmei Zhang(张定梅), Defang Gao(高德芳), Zaifu Jiang(蒋再富), and Wei Dai(戴伟) Theoretical insights into the structures and fundamental properties of pnictogen nitrides 2024 Chin. Phys. B 33 096201

[1] Miao M S, Sun Y H, Zurek E and Lin H Q 2020 Nat. Rev. Chem. 4 508
[2] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L and Mao H K 2020 Sci. Adv. 6 eaba9206
[3] Laniel D, Geneste G, Weck G, Mezouar M and Loubeyre P 2019 Phys. Rev. Lett. 122 066001
[4] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[5] Christe K O, Wilson W W, Sheehy J A and Boatz J A 1999 Angew. Chem. Int. Ed. 38 2004
[6] Zhang J, Zeng Z, Lin H Q and Li Y L 2014 Sci. Rep. 4 4358
[7] Zhang S T, Zhao Z Y, Liu L L and Yang G C 2017 J. Power Sources 365 155
[8] Yu S Y, Huang B W, Zeng Q F, Oganov A R, Zhang L T and Frapper G 2017 J. Phys. Chem. C 121 11037
[9] Wei S L, Li D, Liu Z, Wang W J, Tian F B, Bao K, Duan D F, Liu B B and Cui T 2017 J. Phys. Chem. C 121 9766
[10] Holtgrewe N, Lobanov S S, Mahmood M F and Goncharov A F 2016 J. Phys. Chem. C 120 28176
[11] Liu Z, Li D, Wei S L, Wang W J, Tian F B, Bao K, Duan D F, Yu H Y, Liu B B and Cui T 2017 Inorg. Chem. 56 7494
[12] Lian L L, Liu Y, Li D and Wei S L 2020 RSC Adv. 10 2448
[13] Li Y W, Hao J, Liu H Y, Lu S Y and Tse J S 2015 Phys. Rev. Lett. 115 105502
[14] Yin K T, Wang Y C, Liu H Y, Peng F and Zhang L J 2015 J. Mater. Chem. A 3 4188
[15] Xia K, Sun J, Pickard C J, Klug D D and Needs R J 2017 Phys. Rev. B 95 144102
[16] Li D, Tian F B, Lv Y Z, Wei S L, Duan D F, Liu B B and Cui T 2017 J. Phys. Chem. C 121 1515
[17] Steele B A and Oleynik I I 2017 J. Phys. Chem. A 121 1808
[18] Batyrev I G 2017 J. Phys. Chem. A 121 638
[19] Ceppatelli M, Scelta D, Serrano-Ruiz M, Dziubek K, Morana M, Svitlyk V, Garbarino G, Poreba T, Mezouar M, Peruzzini M and Bini R 2022 Angew. Chem. Int. Ed. 61 e202114191
[20] Ceppatelli M, Serrano-Ruiz M, Morana M, Dziubek K, Scelta D, Garbarino G, Poreba T, Mezouar M, Bini R and Peruzzini M 2024 Angew. Chem. Int. Ed. 63 e202319278
[21] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[22] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[23] Shao X C, Lv J, Liu P, Shao S, Gao P Y, Liu H Y, Wang Y C and Ma Y M 2022 J. Chem. Phys. 156 014105
[24] Duan Q, Shen J, Zhong X, Lu H and Lu C 2022 Phys. Rev. B 105 214503
[25] Sun W, Chen B, Li X, Peng F, Hermann A and Lu C 2023 Phys. Rev. B 107 214511
[26] Lu C, Cui C, Zuo J, Zhong H, He S, Dai W and Zhong X 2023 Phys. Rev. B 108 205427
[27] Duan Q, Zhan L, Shen J, Zhong X and Lu C 2024 Phys. Rev. B 109 054505
[28] Zuo J, Zhang L, Chen B, He K, Dai W, Ding K and Lu C 2024 J. Phys.: Condens. Matter 36 015302
[29] Chen B, He K, Dai W, Gutsev G L and Lu C 2023 J. Phys.: Condens. Matter 35 183002
[30] Tong Q, Lv J, Gao P and Wang Y 2019 Chin. Phys. B 28 106105
[31] Jin Y Y, Zhang J Q, Ling S, Wang Y Q, Li S, Kuang F G, Wu Z Y and Zhang C Z 2022 Chin. Phys. B 31 116104
[32] Wang Y Q, Zhang C Z, Zhang J Q, Li S, Ju M, Sun W G, Dou X L and Jin Y Y 2023 Chin. Phys. B 32 097402
[33] Wang Y, Cui X, Liu J, Jing Q, Duan H and Cao H 2023 Chin. Phys. B 33 016109
[34] Guo S T, Xu Z Z, Geng Y L, Rui Q, Du D C, Li J F and Wang X L 2023 Chin. Phys. B 32 126202
[35] Liu P, Xu M, Lv J, Gao P, Huang C, Li Y, Wang J, Wang Y and Zhou M 2022 Chin. Phys. B 31 106104
[36] Pu C Y, Yu R M, Wang T, Xüe Z Y, Zhu Y S and Zhou D W 2021 Chin. Phys. B 30 017102
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[41] Yin M T, and Cohen M L 1982 Phys. Rev. B 26 3259
[42] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[43] Hill R 1952 Proc. Phys. Soc. London A 65 349
[44] Zhang J, Wang Y, Tang L, Duan J, Wang J, Li S, Ju M, Sun W, Jin Y and Zhang C 2022 Arabian J. Chem. 15 104347
[45] Haines J, Léger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[46] Li D, Tian F, Duan D, Bao K, Chu B, Sha X, Liu B and Cui T 2014 RSC Adv. 4 10133
[47] Wang J J, Hermann A, Kuang X Y, Jin Y Y, Lu C, Zhang C Z, Ju M, Si M T and Iitaka T 2015 RSC Adv. 5 53497
[48] Evans W J, Lipp M J, Yoo C S, Cynn H, Herberg J L, Maxwell R S and Nicol M F 2006 Chem. Mater. 18 2520
[1] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[2] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[3] Chair-like N66- in AlN3 with high-energy density
Shi-Tai Guo(郭世泰), Zhen-Zhen Xu(徐真真), Yan-Lei Geng(耿延雷), Qi Rui(芮琦), Dian-Chen Du(杜殿臣), Jian-Fu Li(李建福), and Xiao-Li Wang(王晓丽). Chin. Phys. B, 2023, 32(12): 126202.
[4] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[5] Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K)
Yunhui Liu(刘云辉), Wei Wang(王威), Feng Xiao(肖峰), Liangbin Xiong(熊良斌), and Xing Ming(明星). Chin. Phys. B, 2021, 30(10): 108102.
[6] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[7] Structural stability and vibrational characteristics of CaB6 under high pressure
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(6): 068101.
[8] Structural and electrical properties of Ga-Te systems under high pressure
Youchun Wang(王友春), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Hui Xie(谢慧), Bingbing Liu(刘冰冰), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056104.
[9] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[10] Review of thermal transport and electronic properties of borophene
Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前). Chin. Phys. B, 2018, 27(3): 036303.
[11] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[12] Theoretical study on the structural, mechanical, electronic properties and QTAIM of CrB4 as a hard material
Xiao-Hong Li(李小红), Hong-Ling Cui(崔红玲), Rui-Zhou Zhang(张瑞州). Chin. Phys. B, 2017, 26(9): 096201.
[13] Geometries, stabilities, and electronic properties analysis in InnNi(0, ±1) clusters: Molecular modeling and DFT calculations
Shun-Ping Shi(史顺平), Chuan-Yu Zhang(张传瑜), Xiao-Feng Zhao(赵晓凤), Xia Li(李侠), Min Yan(闫珉), Gang Jiang(蒋刚). Chin. Phys. B, 2017, 26(8): 083103.
[14] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[15] Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm
Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华). Chin. Phys. B, 2016, 25(5): 053601.
No Suggested Reading articles found!