CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer |
Bin Wu(武斌)†, Na Li(李娜)†, Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰)‡, and Chang-Wen Zhang(张昌文)§ |
School of Physics and Technology, University of Jinan, Jinan 250022, China |
|
|
Abstract Recently, Chern insulators in an antiferromagnetic (AFM) phase have been suggested theoretically and predicted in a few materials. However, the experimental observation of two-dimensional (2D) AFM quantum anomalous Hall effect is still a challenge to date. In this work, we propose that an AFM Chern insulator can be realized in a 2D monolayer of NiOsCl$_6$ modulated by a compressive strain. Strain modulation is accessible experimentally and used widely in predicting and tuning topological nontrivial phases. With first-principles calculations, we have investigated the structural, magnetic, and electronic properties of NiOsCl$_6$. Its stability has been confirmed through molecular dynamical simulations, elasticity constant, and phonon spectrum. It has a collinear AFM order, with opposite magnetic moments of 1.3 $\mu_{\rm B}$ on each Ni/Os atom, respectively, and the Néel temperature is estimated to be 93 K. In the absence of strain, it functions as an AFM insulator with a direct gap with spin-orbital coupling included. Compressive strain will induce a transition from a normal insulator to a Chern insulator characterized by a Chern number $C = 1$, with a band gap of about 30 meV. This transition is accompanied by a structural distortion. Remarkably, the Chern insulator phase persists within the 3%-10% compressive strain range, offering an alternative platform for the utilization of AFM materials in spintronic devices.
|
Received: 26 July 2024
Revised: 01 October 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104183, 52173283, and 62071200), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2021MA040 and ZR2023MA091), the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), and the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043). |
Corresponding Authors:
Shu-Feng Zhang, Chang-Wen Zhang
E-mail: sps_zhangsf@ujn.edu.cn;ss_zhangchw@ujn.edu.cn
|
Cite this article:
Bin Wu(武斌), Na Li(李娜), Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰), and Chang-Wen Zhang(张昌文) Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer 2024 Chin. Phys. B 33 127301
|
[1] Haldane F D M 1988 Phy. Rev. Lett. 61 2015 [2] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41 [3] Liu C X, Zhang S C and Qi X L 2016 Annu. Rev. Conden. Matter Phys. 7 301 [4] Chang C Z, Liu C X and MacDonald A H 2022 Rev. Mod. Phys. 95 011002 [5] Qi X L, Wu Y S and Zhang S C 2006 Phy. Rev. B 74 045125 [6] Lei C and MacDonald A H 2021 Phys. Rev. Mater. 5 L051201 [7] Zhang J, Chang C Z, Tang P, Zhang Z, Feng X, Li K,Wang L, Chen X, Liu C, Duan W, He K, Xue Q K, Ma X and Wang Y 2013 Science 339 1582 [8] Chang C Z, Tang P, Wang Y L, Feng X, Li K, Zhang Z, Wang Y, Wang L L, Chen X, Liu C, Duan W, He K, Ma X C and Xue Q K 2014 Phys. Rev. Lett. 112 056801 [9] Zhang S F, Jiang H, Xie X C and Sun Q F 2014 Phys. Rev. B 89 155419 [10] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M,Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66 [11] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [12] Xiao D, ZhuW, Ran Y, Nagaosa N and Okamoto S 2011 Nat. Commun. 2 596 [13] Wang J, Lian B, Zhang H, Xu Y and Zhang S C 2013 Phys. Rev. Lett. 111 136801 [14] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 [15] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [16] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 [17] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830 [18] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J,Wang Y, He L, Lee T K, LeeWL andWang K L 2014 Phys. Rev. Lett. 113 137201 [19] Li S S, JiWX, Hu S J, Zhang CWand Yan S S 2017 ACS Appl. Mater. Inter. 9 41443 [20] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226 [21] Hu X 2012 Adv. Mater. 24 294 [22] Jungwirth T, Marti X,Wadley P andWunderlich J 2016 Nat. Nanotechnol. 11 231 [23] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [24] Qin P, Yan H, Wang X, et al. 2023 Nature 613 485 [25] Zhou P, Sun C Q and Sun L Z 2016 Nano Lett. 16 6325 [26] Yang W W, Li L, Zhao J S, Liu X X, Deng J B, Tao X and Hu X R 2018 J. Phys.: Condens. Matter 30 185501 [27] Guo P J, Liu Z X and Lu Z Y 2023 npj Comput. Mater. 9 70 [28] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419 [29] Liu Y T, Li J Y and Liu Q H 2023 Nano Lett. 23 8650 [30] Dai Z H, Liu L Q and Zhang Z 2019 Adv. Mater. 31 1805417 [31] Bafekry A, Faraji M, Fadlallah M M, Hoat D M, Jappor H R, Abdolhosseini I, Ghergherehchi M and Feghhia S A H 2021 Phys. Chem. Chem. Phys. 23 25866 [32] Almayyali A O M and Jappor H R 2024 Solid State Sciences 150 107483 [33] Bafekry A, Fadlallah M M, Faraji M, Hieu N N, Jappor H R, Stampfl C, Ang Y S and Ghergherehchi M 2022 ACS Appl. Mater. Interfaces 14 21577 [34] Olsen T 2021 J. Phys. D: Appl. Phys. 54 314001 [35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [36] Blochl P E 1994 Phys. Rev. B 50 17953 [37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [40] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [41] Wan X, Vishwanath A and Savrasov S Y 2012 Phys. Rev. Lett. 108 146601 [42] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118 [43] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [44] Brouder C, Panati G, Calandra M, Mourougane C and Marzari N 2007 Phys. Rev. Lett. 98 046402 [45] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851 [46] Olsen T 2019 MRS Commun. 9 1142 [47] Guo S D and Ang Y S 2023 Phys. Rev. B 108 L180403 [48] Xiao J W and Yan B H 2021 Nat. Rev. Phys. 3 283 [49] Chege S, Ning P, Sifuna J and Amolo G O 2020 AIP Adv. 10 095018 [50] Zhao M W, Zhang X M and Li L Y 2015 Sci. Rep. 5 16108 [51] Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208 [52] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|