Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127301    DOI: 10.1088/1674-1056/ad84cb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer

Bin Wu(武斌)†, Na Li(李娜)†, Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰)‡, and Chang-Wen Zhang(张昌文)§
School of Physics and Technology, University of Jinan, Jinan 250022, China
Abstract  Recently, Chern insulators in an antiferromagnetic (AFM) phase have been suggested theoretically and predicted in a few materials. However, the experimental observation of two-dimensional (2D) AFM quantum anomalous Hall effect is still a challenge to date. In this work, we propose that an AFM Chern insulator can be realized in a 2D monolayer of NiOsCl$_6$ modulated by a compressive strain. Strain modulation is accessible experimentally and used widely in predicting and tuning topological nontrivial phases. With first-principles calculations, we have investigated the structural, magnetic, and electronic properties of NiOsCl$_6$. Its stability has been confirmed through molecular dynamical simulations, elasticity constant, and phonon spectrum. It has a collinear AFM order, with opposite magnetic moments of 1.3 $\mu_{\rm B}$ on each Ni/Os atom, respectively, and the Néel temperature is estimated to be 93 K. In the absence of strain, it functions as an AFM insulator with a direct gap with spin-orbital coupling included. Compressive strain will induce a transition from a normal insulator to a Chern insulator characterized by a Chern number $C = 1$, with a band gap of about 30 meV. This transition is accompanied by a structural distortion. Remarkably, the Chern insulator phase persists within the 3%-10% compressive strain range, offering an alternative platform for the utilization of AFM materials in spintronic devices.
Keywords:  Chern insulator      antiferromagnetism      topological materials  
Received:  26 July 2024      Revised:  01 October 2024      Accepted manuscript online:  09 October 2024
PACS:  73.43.-f (Quantum Hall effects)  
  75.50.Ee (Antiferromagnetics)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104183, 52173283, and 62071200), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2021MA040 and ZR2023MA091), the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), and the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).
Corresponding Authors:  Shu-Feng Zhang, Chang-Wen Zhang     E-mail:  sps_zhangsf@ujn.edu.cn;ss_zhangchw@ujn.edu.cn

Cite this article: 

Bin Wu(武斌), Na Li(李娜), Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰), and Chang-Wen Zhang(张昌文) Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer 2024 Chin. Phys. B 33 127301

[1] Haldane F D M 1988 Phy. Rev. Lett. 61 2015
[2] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41
[3] Liu C X, Zhang S C and Qi X L 2016 Annu. Rev. Conden. Matter Phys. 7 301
[4] Chang C Z, Liu C X and MacDonald A H 2022 Rev. Mod. Phys. 95 011002
[5] Qi X L, Wu Y S and Zhang S C 2006 Phy. Rev. B 74 045125
[6] Lei C and MacDonald A H 2021 Phys. Rev. Mater. 5 L051201
[7] Zhang J, Chang C Z, Tang P, Zhang Z, Feng X, Li K,Wang L, Chen X, Liu C, Duan W, He K, Xue Q K, Ma X and Wang Y 2013 Science 339 1582
[8] Chang C Z, Tang P, Wang Y L, Feng X, Li K, Zhang Z, Wang Y, Wang L L, Chen X, Liu C, Duan W, He K, Ma X C and Xue Q K 2014 Phys. Rev. Lett. 112 056801
[9] Zhang S F, Jiang H, Xie X C and Sun Q F 2014 Phys. Rev. B 89 155419
[10] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M,Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66
[11] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[12] Xiao D, ZhuW, Ran Y, Nagaosa N and Okamoto S 2011 Nat. Commun. 2 596
[13] Wang J, Lian B, Zhang H, Xu Y and Zhang S C 2013 Phys. Rev. Lett. 111 136801
[14] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[15] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[16] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[17] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830
[18] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J,Wang Y, He L, Lee T K, LeeWL andWang K L 2014 Phys. Rev. Lett. 113 137201
[19] Li S S, JiWX, Hu S J, Zhang CWand Yan S S 2017 ACS Appl. Mater. Inter. 9 41443
[20] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[21] Hu X 2012 Adv. Mater. 24 294
[22] Jungwirth T, Marti X,Wadley P andWunderlich J 2016 Nat. Nanotechnol. 11 231
[23] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[24] Qin P, Yan H, Wang X, et al. 2023 Nature 613 485
[25] Zhou P, Sun C Q and Sun L Z 2016 Nano Lett. 16 6325
[26] Yang W W, Li L, Zhao J S, Liu X X, Deng J B, Tao X and Hu X R 2018 J. Phys.: Condens. Matter 30 185501
[27] Guo P J, Liu Z X and Lu Z Y 2023 npj Comput. Mater. 9 70
[28] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419
[29] Liu Y T, Li J Y and Liu Q H 2023 Nano Lett. 23 8650
[30] Dai Z H, Liu L Q and Zhang Z 2019 Adv. Mater. 31 1805417
[31] Bafekry A, Faraji M, Fadlallah M M, Hoat D M, Jappor H R, Abdolhosseini I, Ghergherehchi M and Feghhia S A H 2021 Phys. Chem. Chem. Phys. 23 25866
[32] Almayyali A O M and Jappor H R 2024 Solid State Sciences 150 107483
[33] Bafekry A, Fadlallah M M, Faraji M, Hieu N N, Jappor H R, Stampfl C, Ang Y S and Ghergherehchi M 2022 ACS Appl. Mater. Interfaces 14 21577
[34] Olsen T 2021 J. Phys. D: Appl. Phys. 54 314001
[35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[36] Blochl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[40] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[41] Wan X, Vishwanath A and Savrasov S Y 2012 Phys. Rev. Lett. 108 146601
[42] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118
[43] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[44] Brouder C, Panati G, Calandra M, Mourougane C and Marzari N 2007 Phys. Rev. Lett. 98 046402
[45] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851
[46] Olsen T 2019 MRS Commun. 9 1142
[47] Guo S D and Ang Y S 2023 Phys. Rev. B 108 L180403
[48] Xiao J W and Yan B H 2021 Nat. Rev. Phys. 3 283
[49] Chege S, Ning P, Sifuna J and Amolo G O 2020 AIP Adv. 10 095018
[50] Zhao M W, Zhang X M and Li L Y 2015 Sci. Rep. 5 16108
[51] Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
[52] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[1] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[2] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[3] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[4] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[5] Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7
Xin Zhang(张鑫), Zhicheng Jiang(江志诚), Jian Yuan(袁健), Xiaofei Hou(侯骁飞), Xia Wang(王霞),Na Yu(余娜), Zhiqiang Zou(邹志强), Zhengtai Liu(刘正太), Wei Xia(夏威),Zhenhai Yu(于振海), Dawei Shen(沈大伟), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(9): 097201.
[6] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[7] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
Anxin Wang(王安新) and Tao Qin(秦涛). Chin. Phys. B, 2023, 32(10): 107301.
[10] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[11] Revealing Chern number from quantum metric
Anwei Zhang(张安伟). Chin. Phys. B, 2022, 31(4): 040201.
[12] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[13] Atomically flat surface preparation for surface-sensitive technologies
Cen-Yao Tang(唐岑瑶), Zhi-Cheng Rao(饶志成), Qian-Qian Yuan(袁茜茜), Shang-Jie Tian(田尚杰), Hang Li(李航), Yao-Bo Huang(黄耀波), He-Chang Lei(雷和畅), Shao-Chun Li(李绍春), Tian Qian(钱天), Yu-Jie Sun(孙煜杰), Hong Ding(丁洪). Chin. Phys. B, 2020, 29(2): 028101.
[14] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[15] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
No Suggested Reading articles found!