Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127201    DOI: 10.1088/1674-1056/ad8ecd
RAPID COMMUNICATION Prev   Next  

Ultrafast reconfigurable direct charge trapping devices based on few-layer MoS2

Hui Gao(高辉)1,2, Xuanye Liu(刘轩冶)1,2, Peng Song(宋鹏)1,2, Chijun Wei(尉驰俊)1,2, Nuertai Jiazila(努尔泰cdot加孜拉)1,2, Jiequn Sun(孙杰群)1,2, Kang Wu(吴康)1,2, Hui Guo(郭辉)1,2,3, Haitao Yang(杨海涛)1,2,3,†, Lihong Bao(鲍丽宏)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  Charge trapping devices incorporating 2D materials and high-$\kappa$ dielectrics have emerged as promising candidates for compact, multifunctional memory devices compatible with silicon-based manufacturing processes. However, traditional charge trapping devices encounter bottlenecks including complex device structure and low operation speed. Here, we demonstrate an ultrafast reconfigurable direct charge trapping device utilizing only a 30 nm-thick Al$_{2}$O$_{3}$ trapping layer with a MoS$_{2}$ channel, where charge traps reside within the Al$_{2}$O$_{3}$ bulk confirmed by transfer curves with different gate-voltage sweeping rates and photoluminescence (PL) spectra. The direct charging tapping device shows exceptional memory performance in both three-terminal and two-terminal operation modes characterized by ultrafast three-terminal operation speed ($\sim$300 ns), an extremely low OFF current of 10$^{-14}$ A, a high ON/OFF current ratio of up to 10$^{7}$, and stable retention and endurance properties. Furthermore, the device with a simple symmetrical structure exhibits $V_{\rm D}$ polarity-dependent reverse rectification behavior in the high resistance state (HRS), with a rectification ratio of 10$^{5}$. Additionally, utilizing the synergistic modulation of the conductance of the MoS$_{2}$ channel by $V_{\rm D}$ and $V_{\rm G}$, it achieves gate-tunable reverse rectifier and ternary logic capabilities.
Keywords:  charge trapping memory      two-dimensional materials      reconfigurable device      reverse rectification  
Received:  30 September 2024      Revised:  02 November 2024      Accepted manuscript online:  05 November 2024
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.40.Ei (Rectification)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: This work was supported by the National Key Research & Development Project of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Haitao Yang, Lihong Bao     E-mail:  htyang@iphy.ac.cn;lhbao@iphy.ac.cn

Cite this article: 

Hui Gao(高辉), Xuanye Liu(刘轩冶), Peng Song(宋鹏), Chijun Wei(尉驰俊), Nuertai Jiazila(努尔泰cdot加孜拉), Jiequn Sun(孙杰群), Kang Wu(吴康), Hui Guo(郭辉), Haitao Yang(杨海涛), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧) Ultrafast reconfigurable direct charge trapping devices based on few-layer MoS2 2024 Chin. Phys. B 33 127201

[1] Jhang C J, Xue C X, Hung J M, Chang F C and Chang M F 2021 IEEE Trans. Circuits Syst. I Regul. Pap. 68 1773
[2] Yu S, Shim W, Peng X and Luo Y 2021 IEEE Trans. Circuits Syst. I Regul. Pap. 68 2753
[3] Meena J S, Sze S M, Chand U and Tseng T Y 2014 Nanoscale Res. Lett. 9 526
[4] Lee J D, Hur S H and Choi J D 2002 IEEE Electron Device Lett. 23 264
[5] Larcher L, Pavan P, Albani L and Ghilardi T 2001 IEEE Trans. Electron Devices 48 2081
[6] Chen W M, Swift C, Roberts D, Forbes K, Higman J, Maiti B, Paulson W and Chang K T 1997 Symposium on VLSI Technology p. 63
[7] Kahng D and Sze S M 1967 Bell Syst. Tech. J. 46 1288
[8] Chan T Y, Chen J, Ko P K and Hu C 1987 International Electron Devices Meeting p. 718
[9] Kim N S, Austin T, Baauw D, Mudge T, Flautner K, Hu J S, Irwin M J, Kandemir M and Narayanan V 2003 Computer 36 68
[10] Chhowalla M, Jena D and Zhang H 2016 Nat. Rev. Mater. 1 16052
[11] Fjeldly T A and Shur M 1993 IEEE Trans. Electron Devices 40 137
[12] Lai S C, Lue H T, Yang M J, Hsieh J Y, Wang S Y, Wu T B, Luo G L, Chien C H, Lai E K, Hsieh K Y, Liu R and Lu C Y 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop p. 88
[13] Tsai P H, Chang-Liao K S, Liu T C, Wang T K, Tzeng P J, Lin C H, Lee L S and Tsai M J 2009 IEEE Electron Device Lett. 30 775
[14] Zhang E,Wang W, Zhang C, Jin Y, Zhu G, Sun Q, Zhang DW, Zhou P and Xiu F 2015 ACS Nano 9 612
[15] Hou X, Yan X, Liu C, Ding S, Zhang DWand Zhou P 2018 Semicond. Sci. Technol. 33 034001
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[17] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P and Javey A 2016 Science 354 99
[18] Xiao J, Kang Z, Liu B, Zhang X, Du J, Chen K, Yu H, Liao Q, Zhang Z and Zhang Y 2022 Nano Res. 15 475
[19] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Nature 603 259
[20] Liu Y, Duan X, Shin H J, Park S, Huang Y and Duan X 2021 Nature 591 43
[21] Liu H, Neal A T and Ye P D 2012 ACS Nano 6 8563
[22] Yang F S, Li M, Lee M P, Ho I Y, Chen J Y, Ling H, Li Y, Chang J K, Yang S H, Chang Y M, Lee K C, Chou Y C, Ho C H, Li W, Lien C H and Lin Y F 2020 Nat. Commun. 11 2972
[23] Wen J, Tang W, Kang Z, Liao Q, Hong M, Du J, Zhang X, Yu H, Si H, Zhang Z and Zhang Y 2021 Adv. Sci. 8 2101417
[24] Xiong X, Kang J, Liu S, Tong A, Fu T, Li X, Huang R and Wu Y 2022 Adv. Mater. 34 2270335
[25] Widiapradja L J, Nam T, Jeong Y, Jin H J, Lee Y, Kim K, Lee S, Kim H, Bae H and Im S 2021 Adv. Electron. Mater. 7 2100074
[26] Cao DW, Yan Y,Wang M N, Luo G L, Zhao J R, Zhi J K, Xia C X and Liu Y F 2024 Adv. Funct. Mater. 34 2314649
[27] Tian H, Deng B, Chin M L, Yan X, Jiang H, Han S J, Sun V, Xia Q, Dubey M, Xia F and Wang H 2016 ACS Nano 10 10428
[28] Huang X, Liu C, Tang Z, Zeng S, Wang S and Zhou P 2023 Nat. Nanotechnol. 18 486
[29] Zhang Z C, Li Y, Li J, Chen X D, Yao BW, YuMX, Lu T B and Zhang J 2021 Adv. Funct. Mater. 31 2102571
[30] Specht M, Reisinger H, Stadele M, Hofmann F, Gschwandtner A, Landgraf E, Luyken R J, Schulz T, Hartwich J, Dreeskornfeld L, Rosner W, Kretz J and Risch L 2003 ESSDERC ’03. 33rd Conference on European Solid-State Device Research p. 155
[31] Specht M, Reisinger H, Hofmann F, Schulz T, Landgraf E, Luyken R J, Rösner W, Grieb M and Risch L 2005 Solid-State Electron. 49 716
[32] Shen Y, Zhang Z, Zhang Q,Wei F, Yin H,Wei Q and Men K 2020 RSC Adv. 10 7812
[33] You H W and Cho W J 2010 Appl. Phys. Lett. 96 093506
[34] Chen Q, Yang X, Li Z, Bi J, Xi K, Zhang Z, Zhai P, Sun Y and Liu J 2023 Chin. Phys. B 32 096102
[35] Sun X, Zhang Y, Jia K, Tian G, Yu J, Xiang J, Yang R, Wu Z and Yin H 2022 Chin. Phys. B 31 077701
[36] Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265
[37] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[38] Kingon A I, Maria J P and Streiffer S K 2000 Nature 406 1032
[39] Zhou Y, Fu J, Chen Z, Zhuge F, Wang Y, Yan J, Ma S, Xu L, Yuan H, Chan M, Miao X, He Y and Chai Y 2023 Nat. Electron. 6 870
[40] Wang H, Bao L, Guzman R, Wu K, Wang A, Liu L, Wu L, Chen J, Huan Q, Zhou W, Pantelides S T and Gao H J 2023 Adv. Mater. 35 2301067
[41] Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M and Zhang Z 2017 Nat. Nanotechnol. 12 901
[42] Li D, Chen M, Zong Q and Zhang Z 2017 Nano Lett. 17 6353
[43] Late D J, Liu B, Matte H S S R, Dravid V P and Rao C N R 2012 ACS Nano 6 5635
[44] Shin M, Lee M J, Yoon C, Kim S, Park B H, Lee S and Park J G 2021 J. Korean Phys. Soc 78 816
[45] Yang K, Chen Y, Wang S, Han T and Liu H 2021 Nanotechnology 32 305201
[46] KimW, Javey A, Vermesh O,Wang Q, Li Y and Dai H 2003 Nano Lett. 3 193
[47] Ding G, Yang B, Chen R S, MoWA, Zhou K, Liu Y, Shang G, Zhai Y, Han S T and Zhou Y 2021 Small 17 2103175
[48] Maeng J, Park W, Choe M, Jo G, Kahng Y H and Lee T 2009 Appl. Phys. Lett. 95 123101
[49] Xiong K, Robertson J and Clark S J 2006 Appl. Phys. Lett. 89 022907
[50] Mootheri V, Leonhardt A, Verreck D, Asselberghs I, Huyghebaert C, de Gendt S, Radu I, Lin D and Heyns M 2021 Nanotechnology 32 135202
[51] Ryou J, Kim Y S, Kc S and Cho K 2016 Sci. Rep. 6 29184
[52] Liu Y C, Tan X, Shen T C and Gu F X 2022 Chin. Phys. B 31 087803
[53] Zhang Y, Shao Y Y, Lu X B, Zeng M, Zhang Z, Gao X S, Zhang X J, Liu J M and Dai J Y 2014 Appl. Phys. Lett. 105 172902
[54] Ielmini D 2009 Microelectron. Eng. 86 1870
[55] Prall K 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop p. 5
[56] Degraeve R, Cho M, Govoreanu B, Kaczer B, Zahid M B, Houdt J V, Jurczak M and Groeseneken G 2008 IEEE International Electron Devices Meeting p. 1
[57] Illarionov Y Y, Knobloch T, Jech M, Lanza M, Akinwande D, Vexler M I, Mueller T, Lemme M C, Fiori G, Schwierz F and Grasser T 2020 Nat. Commun. 11 3385
[58] Liu D, Guo Y, Lin L and Robertson J 2013 J. Appl. Phys. 114 083704
[59] Lue H T, Du P Y, Chen C P, Chen W C, Hsieh C C, Hsiao Y H, Shih Y H and Lu C Y 2012 International Electron Devices Meeting p. 9.1.1
[60] Hattori Y, Taniguchi T,Watanabe K and Nagashio K 2018 Phys. Rev. B 97 045425
[61] Rowlinson B D, Zeng J, Patzig C, Ebert M and Chong H M H 2025 J. Phys. D: Appl. Phys. 58 025308
[62] Strand J W, Cottom J, Larcher L and Shluger A L 2020 Phys. Rev. B 102 014106
[63] Yu T, Liu Z, Wang Y, Zhang L, Hou S, Wan Z, Yin J, Gao X, Wu L, Xia Y and Liu Z 2023 Sci. Rep. 13 5865
[64] Vu Q A, Shin Y S, Kim Y R, Nguyen V L, Kang W T, Kim H, Luong D H, Lee I M, Lee K, Ko D S, Heo J, Park S, Lee Y H and YuWJ 2016 Nat. Commun. 7 12725
[65] Danial L, Pikhay E, Herbelin E,Wainstein N, Gupta V,Wald N, Roizin Y, Daniel R and Kvatinsky S 2019 Nat. Electron. 2 596
[66] Di Bartolomeo A, Grillo A, Urban F, Iemmo L, Giubileo F, Luongo G, Amato G, Croin L, Sun L, Liang S J and Ang L K 2018 Adv. Funct. Mater. 28 1800657
[67] Jariwala D, Sangwan V K, Wu C C, Prabhumirashi P L, Geier M L, Marks T J, Lauhon L J and Hersam M C 2013 Proc. Natl. Acad. Sci. USA 110 18076
[68] Besslich P W and Trachtenberg E A 1992 Proceedings The Twenty- Second International Symposium on Multiple-Valued Logic p. 348
[69] Han J, Son J, Ryu S, Cho K and Kim S 2024 Sci. Rep. 14 6446
[70] Lee C, Lee C, Lee S, Choi J, Yoo H and Im S G 2023 Nat. Commun. 14 3757
[71] Jiang W, Xie B, Liu C C and Shi Y 2019 Nat. Electron. 2 376
[1] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[2] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[3] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[4] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[5] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[6] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[7] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[8] Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by bm C-V measurement
Qiyu Chen(陈麒宇), Xirong Yang(杨西荣), Zongzhen Li(李宗臻), Jinshun Bi(毕津顺), Kai Xi(习凯),Zhenxing Zhang(张振兴), Pengfei Zhai(翟鹏飞), Youmei Sun(孙友梅), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(9): 096102.
[9] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[10] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[11] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[12] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[13] Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
Zhi-Yuan Li(李志远) and Jian-Feng Chen(陈剑锋). Chin. Phys. B, 2023, 32(10): 104211.
[14] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[15] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
No Suggested Reading articles found!