Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057504    DOI: 10.1088/1674-1056/acbaee
INSTRUMENTATION AND MEASUREMENT Prev   Next  

A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter

Zhe Ding(丁哲)1,2, Yumeng Sun(孙豫蒙)1,2, Mengqi Wang(王孟祺)1,2, Pei Yu(余佩)1,2, Ningchong Zheng(郑宁冲)3,4,5,6, Yipeng Zang(臧一鹏)3,4,5,6, Pengfei Wang(王鹏飞)1,2,7, Ya Wang(王亚)1,2,7, Yuefeng Nie(聂越峰)3,4,5,6, Fazhan Shi(石发展)1,2,7,8,†, and Jiangfeng Du(杜江峰)1,2,7,‡
1 CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
4 Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China;
5 College of Engineering and Applied Science, Nanjing University, Nanjing 210093, China;
6 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
7 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
8 School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
Abstract  We present a magnetic scanning microscope equipped with a nitrogen-vacancy (NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous strain-tuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described. In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and x-ray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.
Keywords:  nitrogen-vacancy (NV) center      antiferromagnetism      strain tuning      soft matter  
Received:  17 December 2022      Revised:  08 February 2023      Accepted manuscript online:  10 February 2023
PACS:  75.50.-y (Studies of specific magnetic materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  07.79.-v (Scanning probe microscopes and components)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 11861161004, and 12104447), the National Key R&D Program of China (Grant No. 2018YFA0306600), the Chinese Academy of Sciences (Grant Nos. XDC07000000, GJJSTD20200001, QYZDY-SSW-SLH004, Y201984, and YSBR-068), Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0303204 and 2021ZD0302200), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), Hefei Comprehensive National Science Center, China Postdoctoral Science Foundation (Grant No. 2020M671858), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Fazhan Shi, Jiangfeng Du     E-mail:  fzshi@ustc.edu.cn;djf@ustc.edu.cn

Cite this article: 

Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰) A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter 2023 Chin. Phys. B 32 057504

[1] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[2] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[3] Zhao Z, Ye X, Xu S, Yu P, Yang Z, Kong X, Wang Y, Xie T, Shi F and Du J 2022 Sub-nanotesla Sensitivity at the Nanoscale with a Single Spin
[4] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648
[5] Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D and Jacques V 2014 Science 344 1366
[6] Gross I, Akhtar W, Garcia V, Martínez L J, Chouaieb S, Garcia K, Carrétéro C, Barthélémy A, Appel P, Maletinsky P, Kim J V, Chauleau J Y, Jaouen N, Viret M, Bibes M, Fusil S and Jacques V 2017 Nature 549 252
[7] Hedrich N, Wagner K, Pylypovskyi O V, Shields B J, Kosub T, Sheka D D, Makarov D and Maletinsky P 2021 Nat. Phys. 17 574
[8] Wörnle MS, Welter P, Giraldo M, Lottermoser T, Fiebig M, Gambardella P and Degen C L 2021 Phys. Rev. B 103 094426
[9] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D and Yacoby A 2018 Nat. Commun. 9 2712
[10] Gross I, Akhtar W, Hrabec A, Sampaio J, Martínez L J, Chouaieb S, Shields B J, Maletinsky P, Thiaville A, Rohart S and Jacques V 2018 Phys. Rev. Mater. 2 024406
[11] Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, lin He Q, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K and Wang K L 2018 Nano Lett. 18 980
[12] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F and Maletinsky P 2019 Science 364 973
[13] Ku M J H, Zhou T X, Li Q, Shin Y J, Shi J K, Burch C, Anderson L E, Pierce A T, Xie Y, Hamo A, Vool U, Zhang H, Casola F, Taniguchi T, Watanabe K, Fogler M M, Kim P, Yacoby A and Walsworth R L 2020 Nature 583 537
[14] Vool U, Hamo A, Varnavides G, Wang Y, Zhou T X, Kumar N, Dovzhenko Y, Qiu Z, Garcia C A C, Pierce A T, Gooth J, Anikeeva P, Felser C, Narang P and Yacoby A 2021 Nat. Phys. 17 1216
[15] Nagel S R 2017 Rev. Mod. Phys. 89 025002
[16] Zang Y, et al. 2022 Adv. Mater. 34 2105778
[17] Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y and Pan X 2020 Adv. Mater. Interfaces 7 1901604
[18] Kavatamane V K, Duan D, Arumugam S R, Raatz N, Pezzagna S, Meijer J and Balasubramanian G 2019 New J. Phys. 21 103036
[19] Badilita V, Meier R C, Spengler N, Wallrabe U, Utz M and Korvink J G 2012 Soft Matter 8 10583
[20] Tokarev A, Yatvin J, Trotsenko O, Locklin J and Minko S 2016 Advanced Functional Materials 26 3761
[21] Lum G Z, Ye Z, Dong X, Marvi H, Erin O, Hu W and Sitti M 2016 Proc. Natl. Acad. Sci. USA 113 E6007
[22] Erb R M, Martin J J, Soheilian R, Pan C and Barber J R 2016 Advanced Functional Materials 26 3859
[23] Ding Z, Sun Y, Zheng N, Ma X, Wang M, Zang Y, Yu P, Wang P, Wang Y, Yang Y, Nie Y, Shi F and Du J 2022 Observation of uniaxial strain tuned spin cycloid in a freestanding BiFeO3 film
[24] Guo M, Wang M, Wang P, Wu D, Ye X, Yu P, Huang Y, Shi F, Wang Y and Du J 2021 Rev. Sci. Instrum. 92 055001
[25] Jia W, Shi Z, Qin X, Rong X and Du J 2018 Rev. Sci. Instrum. 89 064705
[26] Dréeau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F and Jacques V 2011 Phys. Rev. B 84 195204
[27] Haykal A, Fischer J, Akhtar W, Chauleau J Y, Sando D, Finco A, Godel F, Birkhöolzer Y A, Carrétéro C, Jaouen N, Bibes M, Viret M, Fusil S, Jacques V and Garcia V 2020 Nat. Commun. 11 1704
[28] Bakaul S R, Prokhorenko S, Zhang Q, Nahas Y, Hu Y, Petford-Long A, Bellaiche L and Valanoor N 2021 Adv. Mater. 33 2105432
[29] Fasolino A, Los J H and Katsnelson M I 2007 Nat. Mater. 6 858
[30] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y and Pan X 2019 Nature 570 87
[31] Sando D, Han M, Govinden V, Paull O, Appert F, Carrétéro C, Fischer J, Barthélémy A, Bibes M, Garcia V, Fusil S, Dkhil B, Juraszek J, Zhu Y, Ma X and Nagarajan V 2020 Advanced Functional Materials 30 2000343
[32] Sando D, et al. 2013 Nat. Mater. 12 641
[1] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[2] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[3] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[4] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[5] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
[6] Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials
Lan-Ying Zhang(张兰英), Yan-Zi Gao(高延子), Ping Song(宋平), Xiao-Juan Wu(武晓娟), Xiao Yuan(苑晓), Bao-Feng He(何宝凤), Xing-Wu Chen(陈兴武), Wang Hu(胡望), Ren-Wei Guo(郭仁炜), Hang-Jun Ding(丁杭军), Jiu-Mei Xiao(肖久梅), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 096101.
[7] Skin formation in drying a film of soft matter solutions: Application of solute based Lagrangian scheme
Ling Luo(罗凌), Fanlong Meng(孟凡龙), Junying Zhang(张俊英), Masao Doi. Chin. Phys. B, 2016, 25(7): 076801.
[8] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
[9] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2015, 24(5): 057101.
No Suggested Reading articles found!