Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056102    DOI: 10.1088/1674-1056/28/5/056102
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials

Crystallographic and magnetic properties of van der Waals layered FePS3 crystal

Qi-Yun Xie(解其云)1,4, Min Wu(吴敏)1, Li-Min Chen(陈丽敏)1, Gang Bai(白刚)1, Wen-Qin Zou(邹文琴)3, Wei Wang(王伟)2,3, Liang He(何亮)3
1 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
2 Key Laboratory of Flexible Electronics(KLOFE) & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 211816, China;
3 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
4 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current (dc) and alternating current (ac) magnetic susceptibility. The paramagnetic to antiferromagnetic transition occurs at approximately TN~115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe2+ could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded. Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS3 system.

Keywords:  FePS3      van der Waals crystals      single crystal      antiferromagnetism  
Received:  23 November 2018      Revised:  26 February 2019      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  75.50.Ee (Antiferromagnetics)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404169, 51602159, and 11704196), the Scientific Research Foundation of Nanjing University of Posts & Telecommunications, China (Grant Nos. NY217043 and NY218021), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. KYCX17_0754 and SJCX18_0287).

Corresponding Authors:  Wei Wang, Liang He     E-mail:;

Cite this article: 

Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮) Crystallographic and magnetic properties of van der Waals layered FePS3 crystal 2019 Chin. Phys. B 28 056102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[3] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[4] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[5] Li Y, Wang T M, Wu M, Cao T, Chen Y W, Sankar R, Ulaganathan R K, Chou F C, Wetzel C, Xu C Y, Louie S G and Shi S F 2018 2D Mater. 5 021002
[6] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[7] Joo M K, Moon B H, Ji H, Han G H, Kim H, Lee G, Lim S C, Suh D and Lee Y H 2016 Nano Lett. 16 6383
[8] Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
[9] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[10] Li X, Wu X and Yang J 2014 J. Am. Chem. Soc. 136 11065
[11] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[12] Klingen W, Eulenberger G and Hahn H 1970 Naturwissenschaften 57 88
[13] Taylor B E, Steger J and Wold A 1973 J. Solid State Commun. 7 461
[14] Jernberg P, Bjarman S and Wäppling R 1984 J. Magn. Magn. Mater. 46 178
[15] Scagliotti M, Jouanne M, Balkanski M and Ouvrard G 1985 J. Solid State Commun. 54 291
[16] Jouanne M, Sanjuan M L, Kanehisa M A, Balkanski M and Scagliotti M 1989 Mater. Sci. Eng. B 3 85
[17] Flem G L, Brec R, Ouvrard G, Louisy A and Segransan P 1982 J. Phys. Chem. Solids 43 455
[18] Rule K C, McIntyre G J, Kennedy S J and Hicks T J 2007 Phys. Rev. B 76 134402
[19] Zhu W, Gan W, Muhammad Z, Wang C D, Wu C Q, Liu H J, Liu D B, Zhang K, He Q, Jiang H L, Zheng X S, Sun Z, Chen S M and Song L 2018 Chem. Commun. 54 4481
[20] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[21] Cheng Z Z, Shifa T A, Wang F M, Gao Y, He P, Zhang K, Jiang C, Liu Q L and He J 2018 Adv. Mater. 30 1707433
[22] Gao Y, Lei S J, Kang T T, Fei L F, Mak C L, Yuan J, Zhang M G, Li S J, Bao Q L, Zeng Z M, Wang Z, Gu H S and Zhang K 2018 Nanotechnology 29 244001
[23] Zhang S, Zhao X D, Wu D H and Zhou Z 2016 Adv. Sci. 3 1600062
[24] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Noh T W and Park J G 2016 Sci. Rep. 6 20904
[25] Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
[26] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[27] Scagliotti M, Jouanne M, Balkanski M, Ouvrard G and Benedek G 1987 Phys. Rev. B 35 7097
[28] Rehman Z U, Muhammad Z, Moses O A, Zhu W, Wu C, He Q, Habib M and Song L 2018 Micromachines 9 292
[29] Wildes A R, Rule K C, Bewley R I, Enderle M and Hicks T J 2012 J. Phys.: Condens. Matter 24 416004
[30] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425
[31] Mayorga-Martinez C C, Sofer Z, Sedmidubský D, Huber Š, Eng A Y S and Pumera M 2017 ACS Appl. Mater. Interfaces 9 12563
[1] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[5] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[6] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[7] Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method
A. Abdel Moez, Ahmed I. Ali, and A. Tayel. Chin. Phys. B, 2022, 31(1): 018103.
[8] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[9] Crystal growth, structure and optical properties of Pr3+-doped yttria-stabilized zirconia single crystals
Dai-Ni Wang(王黛妮), Shou-Lei Xu(徐守磊), Xiang-Yu Wang(王翔宇), Si-Yao Li(李思瑶), Xing Hong(洪杏), Bernard A. Goodman, and Wen Deng(邓文). Chin. Phys. B, 2021, 30(7): 078103.
[10] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[11] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[12] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[15] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
No Suggested Reading articles found!