Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Crystallographic and magnetic properties of van der Waals layered FePS3 crystal |
Qi-Yun Xie(解其云)1,4, Min Wu(吴敏)1, Li-Min Chen(陈丽敏)1, Gang Bai(白刚)1, Wen-Qin Zou(邹文琴)3, Wei Wang(王伟)2,3, Liang He(何亮)3 |
1 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
2 Key Laboratory of Flexible Electronics(KLOFE) & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 211816, China;
3 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
4 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current (dc) and alternating current (ac) magnetic susceptibility. The paramagnetic to antiferromagnetic transition occurs at approximately TN~115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe2+ could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded. Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS3 system.
|
Received: 23 November 2018
Revised: 26 February 2019
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404169, 51602159, and 11704196), the Scientific Research Foundation of Nanjing University of Posts & Telecommunications, China (Grant Nos. NY217043 and NY218021), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. KYCX17_0754 and SJCX18_0287). |
Corresponding Authors:
Wei Wang, Liang He
E-mail: wwesun2000@163.com;heliang@nju.edu.cn
|
Cite this article:
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮) Crystallographic and magnetic properties of van der Waals layered FePS3 crystal 2019 Chin. Phys. B 28 056102
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[3] |
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
|
[4] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
|
[5] |
Li Y, Wang T M, Wu M, Cao T, Chen Y W, Sankar R, Ulaganathan R K, Chou F C, Wetzel C, Xu C Y, Louie S G and Shi S F 2018 2D Mater. 5 021002
|
[6] |
Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
|
[7] |
Joo M K, Moon B H, Ji H, Han G H, Kim H, Lee G, Lim S C, Suh D and Lee Y H 2016 Nano Lett. 16 6383
|
[8] |
Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
|
[9] |
Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
|
[10] |
Li X, Wu X and Yang J 2014 J. Am. Chem. Soc. 136 11065
|
[11] |
Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
|
[12] |
Klingen W, Eulenberger G and Hahn H 1970 Naturwissenschaften 57 88
|
[13] |
Taylor B E, Steger J and Wold A 1973 J. Solid State Commun. 7 461
|
[14] |
Jernberg P, Bjarman S and Wäppling R 1984 J. Magn. Magn. Mater. 46 178
|
[15] |
Scagliotti M, Jouanne M, Balkanski M and Ouvrard G 1985 J. Solid State Commun. 54 291
|
[16] |
Jouanne M, Sanjuan M L, Kanehisa M A, Balkanski M and Scagliotti M 1989 Mater. Sci. Eng. B 3 85
|
[17] |
Flem G L, Brec R, Ouvrard G, Louisy A and Segransan P 1982 J. Phys. Chem. Solids 43 455
|
[18] |
Rule K C, McIntyre G J, Kennedy S J and Hicks T J 2007 Phys. Rev. B 76 134402
|
[19] |
Zhu W, Gan W, Muhammad Z, Wang C D, Wu C Q, Liu H J, Liu D B, Zhang K, He Q, Jiang H L, Zheng X S, Sun Z, Chen S M and Song L 2018 Chem. Commun. 54 4481
|
[20] |
Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
|
[21] |
Cheng Z Z, Shifa T A, Wang F M, Gao Y, He P, Zhang K, Jiang C, Liu Q L and He J 2018 Adv. Mater. 30 1707433
|
[22] |
Gao Y, Lei S J, Kang T T, Fei L F, Mak C L, Yuan J, Zhang M G, Li S J, Bao Q L, Zeng Z M, Wang Z, Gu H S and Zhang K 2018 Nanotechnology 29 244001
|
[23] |
Zhang S, Zhao X D, Wu D H and Zhou Z 2016 Adv. Sci. 3 1600062
|
[24] |
Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Noh T W and Park J G 2016 Sci. Rep. 6 20904
|
[25] |
Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
|
[26] |
Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
|
[27] |
Scagliotti M, Jouanne M, Balkanski M, Ouvrard G and Benedek G 1987 Phys. Rev. B 35 7097
|
[28] |
Rehman Z U, Muhammad Z, Moses O A, Zhu W, Wu C, He Q, Habib M and Song L 2018 Micromachines 9 292
|
[29] |
Wildes A R, Rule K C, Bewley R I, Enderle M and Hicks T J 2012 J. Phys.: Condens. Matter 24 416004
|
[30] |
Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425
|
[31] |
Mayorga-Martinez C C, Sofer Z, Sedmidubský D, Huber Š, Eng A Y S and Pumera M 2017 ACS Appl. Mater. Interfaces 9 12563
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|