|
|
Revealing Chern number from quantum metric |
Anwei Zhang(张安伟)1,2,† |
1 Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; 2 Department of Physics, Ajou University, Suwon 16499, Korea |
|
|
Abstract Chern number is usually characterized by Berry curvature. Here, by investigating the Dirac model of even-dimensional Chern insulator, we give the general relation between Berry curvature and quantum metric, which indicates that the Chern number can be encoded in quantum metric as well as the surface area of the Brillouin zone on the hypersphere embedded in Euclidean parameter space. We find that there is a corresponding relationship between the quantum metric and the metric on such a hypersphere. We give the geometrical property of quantum metric. Besides, we give a protocol to measure the quantum metric in the degenerate system.
|
Received: 01 September 2021
Revised: 04 October 2021
Accepted manuscript online: 13 October 2021
|
PACS:
|
02.40.-k
|
(Geometry, differential geometry, and topology)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
61.82.Ms
|
(Insulators)
|
|
Fund: We would like to thank R. B. Liu for useful discussion and N. Goldman for helpful comment. |
Corresponding Authors:
Anwei Zhang
E-mail: zawcuhk@gmail.com
|
Cite this article:
Anwei Zhang(张安伟) Revealing Chern number from quantum metric 2022 Chin. Phys. B 31 040201
|
[1] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247 [2] Berry M V 1984 Proc. R. Soc. Lond. A 392 45 [3] Simon B 1983 Phys. Rev. Lett. 51 2167 [4] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [5] Zhang S C and Hu J 2001 Science 294 823 [6] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289 [7] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 [8] Ma Y Q, Chen S, Fan H and Liu W M 2010 Phys. Rev. B 81 245129 [9] Zanardi P and Paunkovic N 2006 Phys. Rev. E 74 031123 [10] Carollo A, Valenti D and Spagnolo B 2020 Phys. Rep. 838 1 [11] Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev. Lett. 99 100603 [12] Dey A, Mahapatra S, Roy P and Sarkar T 2012 Phys. Rev. E 86 031137 [13] Yang S, Gu S J, Sun C P and Lin H Q 2008 Phys. Rev. A 78 012304 [14] Garnerone S, Abasto D, Haas S and Zanardi P 2009 Phys. Rev. A 79 032302 [15] Klees R L, Rastelli G, Cuevas J C and Belzig W 2020 Phys. Rev. Lett. 124 197002 [16] Bleu O, Malpuech G, Gao Y and Solnyshkov D D 2018 Phys. Rev. Lett. 121 020401 [17] Palumbo G and Goldman N 2018 Phys. Rev. Lett. 121 170401 [18] Ahn J, Guo G Y and Nagaosa N 2020 Phys. Rev. X 10 041041 [19] Ahn J, Guo G Y, Nagaosa N and Vishwanath A 2021 arXiv:2103.01241[cond-mat.mes-hall] [20] Zhang Y F, Yang Y Y, Ju Y, Sheng L, Shen R, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 117312 [21] Claassen M, Lee C H, Thomale R, Qi X L and Devereaux T P 2015 Phys. Rev. Lett. 114 236802 [22] Yang L, Ma Y Q and Li X G 2015 Physica B 456 359 [23] Piechon F, Raoux A, Fuchs J N and Montambaux G 2016 Phys. Rev. B 94 134423 [24] Pozo O and de Juan F 2020 Phys. Rev. B 102 115138 [25] Qi X L, Hughes T L and Zhang S. C 2008 Phys. Rev. B 78 195424 [26] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. B 69 235206 [27] Weatherburn C E 1938 An Introduction to Riemannian Geometry and the Tensor Calculus (Cambridge:Cambridge University) [28] In the hyperspherical coordinates $\hat{d}_1=\cos \theta_1$, $\hat{d}_2=\sin\theta_1\cos \theta_2$, $\hat{d}_3=\sin\theta_1\sin\theta_2\cos \theta_3$, $\hat{d}_4=\sin\theta_1\sin\theta_2\sin\theta_3\cos\theta_4$, $\hat{d}_5=\sin\theta_1\sin\theta_2\sin\theta_3\sin\theta_4$, the non-zero components of the quantum metric tensor are $g_{\theta_1\theta_1}=\frac{1}{2}$, $g_{\theta_2\theta_2}=\frac{1}{2}\sin^2\theta_1$, $g_{\theta_3\theta_3}=\frac{1}{2}\sin^2\theta_1\sin^2\theta_2$, $g_{\theta_4\theta_4}=\frac{1}{2}\sin^2\theta_1\sin^2 \theta_2\sin^2\theta_3$. It can be seen that these diagonal elements are positive. [29] Eguchi T, Gilkey P B and Hanson A J 1980 Phys. Rep. 66 213 [30] Morgan F 1993 Riemannian Geometry:A Beginner's Guide (Boston:Jones and Bartlett) p. 72 [31] Sugawa S, Salces-Carcoba F, Perry A R, Yue Y and Spielman I B 2018 Science 360 1429 [32] Price H M 2020 Phys. Rev. B 101 205141 [33] Wang Y, Price H M, Zhang B and Chong Y D 2020 Nat. Commun. 11 2356 [34] Yu R, Zhao Y X and Schnyder A P 2020 Natl. Sci. Rev. 7 1288 [35] Ozawa T and Goldman N 2018 Phys. Rev. B 97 201117(R) [36] Roy R 2014 Phys. Rev. B 90 165139 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|