Abstract When developing a practical continuous-variable quantum key distribution (CVQKD), the detector is necessary at the receiver's side. We investigate the practical security of the CVQKD system with an unbalanced heterodyne detector. The results show that unbalanced heterodyne detector introduces extra excess noise into the system and decreases the lower bound of the secret key rate without awareness of the legitimate communicators, which leaves loopholes for Eve to attack the system. In addition, we find that the secret key rate decreases more severely with the increase in the degree of imbalance and the excess noise induced by the imbalance is proportional to the intensity of the local oscillator (LO) under the same degree of imbalance. Finally, a countermeasure is proposed to resist these kinds of effects.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001383) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JM-591).
Corresponding Authors:
Weiqi Liu, Chen He
E-mail: vickylwq1991@nwu.edu.cn;chenhe@nwu.edu.cn
Cite this article:
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨) Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector 2022 Chin. Phys. B 31 070303
[1] Ralph T C 1999 Phys. Rev. A61 010303 [2] Reid M D 2000 Phys. Rev. A62 062308 [3] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys.77 513 [4] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys.84 621 [5] Bennett C H and Brassard G 1984 Proceeding of International Conference on Computers Systems and Signal Processing, December 10-12, Bangalore, India, p. 175 [6] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys.74 145 [7] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature421 238 [8] Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, Lvovsky A and Tian L 2011 New J. Phys.13 013003 [9] Carleton H R and Maloney W T 1968 Appl. Opt.7 1241 [10] Yuen H P and Chan V W S 1983 Opt. Lett.8 177 [11] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett.93 170504 [12] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2005 Phys. Rev. A 73 022316 [13] Zeng G H 2010 Quantum Private Communication (Beijing:Higher Education Press) pp. 260-309 [14] Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A76 052323 [15] Huang D, Lin D K, Wang C, Liu W Q, Fang S H, Peng J Y, Huang P, and Zeng G H 2015 Opt. Express23 17511 [16] Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep.6 19201 [17] Huang D, Huang P, Li H, Wang T, Zhou Y M, Zeng G H 2016 Opt. Lett.41 3511 [18] Jouguet P, Kunz-Jacques S, Debuisschert T, Fossier S, Diamanti E, Alléaume R, Tualle-Brouri R, Grangier P, Leverrier A, Pache P and Painchault P 2012 Opt. Express20 14030 [19] Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett.97 190502 [20] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503 [21] Bugge A N, Sauge S, Ghazali A M M, Skaar J, Lydersen L and V. Makarov 2014 Phys. Rev. Lett.112 070503 [22] Huang A Q, Navarrete Á, Sun S H, Chaiwongkhot P, Curty M and Makarov V 2019 Phys. Rev. Appl.12 064043 [23] Huang A Q, Li R, Egorov V, Tchouragoulov S, Kumar K and Makarov V 2020 Phys. Rev. Appl.13 034017 [24] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A87 062313 [25] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A88 022339 [26] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A87 052309 [27] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C and Han Z F 2013 Phys. Rev. A87 062329 [28] Kunz-Jacques S and Jouguet P 2015 Phys. Rev. A91 022307 [29] Grosshans F and Grangier P 2002 Phys. Rev. Lett.88 057902 [30] Liu W Q, Peng J Y, Qi J, Cao Z W and He C 2020 Laser Phys. Lett.17 055203 [31] Cives-Esclop A, Luis A and Sánchez-Soto L L 2000 Opt. Commun.175 153 [32] Kühn B and Vogel W 2016 Phys. Rev. Lett.116 163603 [33] Huang Y D, Zhang Y C, Xu B J, Huang L Y and Yu S 2020 J. Phys. B:At. Mol. Opt. Phys54 015503 [34] Almeida M, Pereira D, Facão M, Pinto A N and Silva N A 2020 Opt. Quant. Electron.52 503 [35] Wallentowitz S and Vogel W 1996 Phys. Rev. A53 4528 [36] Silva N A, Pereira D, Muga N J and Pinto A N 2020 Proceedings of the 2020 22nd International Conference on Transparent Optical Networks, July 19-23, Bari, Italy, p. 1 [37] Huang L Y, Zhang Y C and Yu S 2021 Chin. Phys. Lett. 38 040301 [38] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A81 062343 [39] Zheng Y, Huang P, Huang A Q, Peng J Y and Zeng G H 2019 Phys. Rev. A100 012313 [40] Holevo A S 1973 Problems Inform. Transmission9 177 [41] Garcia-Patron Sanchez R 2007 "Quantum information with optical continuous variables:from Bell tests to key distribution", Ph.D. dissertation (Brussels:Université libre de Bruxelles) [42] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R and Grangier P 2009 J. Phys. B-At. Mol. Opt. Phys.42 114014
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.