Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 083101    DOI: 10.1088/1674-1056/ad4bbe
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules

C. S. Gomes1, F. E. Jorge1,2,†, and A. Canal Neto1
1 Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil;
2 Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, 35402-136 Ouro Preto, MG, Brazil
Abstract  A segmented basis set of quadruple zeta valence quality plus polarization functions (QZP) for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian. This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately. Using the ZORA-CCSD(T)/QZP-ZORA theoretical model, atomic ionization energies and bond lengths, harmonic vibrational frequencies, and atomization energies of some molecules were calculated. The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties. For atomization energies, a similar observation emerges when considering spin-orbit couplings. With the augmented QZP-ZORA set, static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values. Performance evaluations of the ZORA and Douglas-Kroll-Hess Hamiltonians were made for each property studied.
Keywords:  QZP-ZORA and AQZP-ZORA basis sets      elements from H to Xe      CCSD(T) method      atomic and molecular properties  
Received:  17 February 2024      Revised:  12 May 2024      Accepted manuscript online:  15 May 2024
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  31.15.eg (Exchange-correlation functionals (in current density functional theory))  
Corresponding Authors:  F. E. Jorge     E-mail:  francisco.jorge@ufes.br

Cite this article: 

C. S. Gomes, F. E. Jorge, and A. Canal Neto All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules 2024 Chin. Phys. B 33 083101

[1] Schäfer A, Horn H and Ahlrichs R 1992 J. Chem. Phys. 97 2571
[2] Schäfer A, Huber C and Ahlrichs R 1994 J. Chem. Phys. 100 5829
[3] Weigend F, Furche F and Ahlrichs R 2003 J. Chem. Phys. 119 12753
[4] Almlöf J and Taylor P R 1987 J. Chem. Phys. 86 4070
[5] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
[6] Woon D E and Dunning Jr T H 1993 J. Chem. Phys. 98 1358
[7] Wilson A K, van Mourik T and Dunning Jr T H 1996 J. Mol. Struct. THEOCHEM 388 339
[8] Wilson A K, Woon D E, Peterson K A and Dunning Jr T H 1999 J. Chem. Phys. 110 7667
[9] Raffenet R C 1973 J. Chem. Phys. 58 4452
[10] Dunning Jr T H 1970 J. Chem. Phys. 53 2823
[11] Canal Neto A, Muniz E P, Centoducatte R and Jorge F E 2005 J. Mol. Struct. THEOCHEM 718 219
[12] Camiletti G G, Machado S F and Jorge F E 2008 J. Comp. Chem. 29 2434
[13] Barros C L, de Oliveira P J P, Jorge F E, Canal Neto A and Campos M 2010 Mol. Phys. 108 1965
[14] Barbieri P L, Fantin P A and Jorge F E 2006 Mol. Phys. 104 2945
[15] Machado S F, Camiletti G G, Canal Neto A, Jorge F E and Jorge R S 2009 Mol. Phys. 107 1713
[16] Campos C T and Jorge F E 2013 Mol. Phys. 111 167
[17] Ceolin G A, de Berrêdo R C and Jorge F E 2013 Theor. Chem. Acc. 132 1339
[18] Ferreira I B, Campos C T and Jorge F E 2020 J. Mol. Model. 26 95
[19] Camiletti G G, Canal Neto A, Jorge F E and Machado S F 2009 J. Mol. Struct. THEOCHEM 910 122
[20] De Oliveira P J P, Barros C L, Jorge F E, Canal Neto A and Campos M 2010 J. Mol. Struct. THEOCHEM 948 43
[21] Fantin P A, Barbieri P L, Canal Neto A and Jorge F E 2007 J. Mol. Struct. THEOCHEM 810 103
[22] Martins L S C, de Souza F A L, Ceolin G A, Jorge F E, de Berrêdo R C and Campos C T 2013 Comput. Theor. Chem. 1013 62
[23] Van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
[24] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[25] Hess B A 1985 Phys. Rev. A 32 756
[26] Hess B A 1986 Phys. Rev. A 33 3742
[27] De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48
[28] Jorge F E, Canal Neto A, Camiletti G G and Machado S F 2009 J. Chem. Phys. 130 064108
[29] De Almeida C A, Pinto L P N M, dos Santos H F and Paschoal D F S 2021 J. Mol. Model. 27 322
[30] Mikherdov A S, Jin M and Ito H 2023 Chem. Sci. 14 4485
[31] Lavrenova L G, Ivanova A I, Glinskaya L A, Artem’ev A V, Lavrov A N, Novikov A S and Abramov P A 2023 Chem. Asian J. 18 e202201200
[32] Fomenko I S, Koshcheeva O S, Kuznetsova N I, Larina T V, Gongola M I, Afewerki M, Abramov P A, Novikov A S and Gushchin A L 2023 Catalysts 13 849
[33] Jorge F E and de Macedo L G M 2016 Chin. Phys. B 25 123102
[34] Jorge F E and Venancio J R C 2018 Chin. Phys. B 27 063102
[35] Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2005 J. Phys. Chem. A 109 6575
[36] Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2004 J. Phys. Chem. A 108 2851
[37] Roos B O, Veryazov V and Widmark P O 2004 Theor. Chem. Acc. 111 345
[38] Noro T, Sekiya M and Koga T 2012 Theor. Chem. Acc. 131 1124
[39] Balabanov N B and Peterson K A 2005 J. Chem. Phys. 123 064107
[40] Peterson K A, Figgen D, Dolg M and Stoll H 2007 J. Chem. Phys. 126 124101
[41] Canal Neto A, Ferreira I B, Jorge F E and de Oliveira A Z 2021 Chem. Phys. Lett. 771 138548
[42] Pantazis D A, Chen X Y, Landis C R and Neese F 2008 J. Chem. Theory Comput. 4 908
[43] Canal Neto A, de Oliveira A Z, Jorge F E and Camiletti G G 2021 J. Mol. Model. 27 232
[44] Jorge F E and Canal Neto A 2020 Theor. Chem. Acc. 139 76
[45] Neese F 2018 WIREs Comput. Mol. Sci. 8 e1327
[46] Franzk Y J, Spiske L, Pollak P and Weigend F 2020 J. Chem. Theory Comput. 16 5658
[47] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2023 NIST Atomic Spectra Database (ver. 5.11)
[48] Centoducatte R, de Oliveira A Z, Jorge F E and Camiletti G G 2022 Comput. Theor. Chem. 1207 113511
[49] Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200
[50] Lide D R (Ed.) 2003-2004 CRC Handbook of Chemistry and Physics 84th edn (CRC Press)
[51] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
[52] Sontag H and Weber R 1982 J. Mol. Spectrosc. 91 72
[53] Chase Jr M W 1998 J. Phys. Chem. Ref. Data Monograph vol. 9. NISTJANAF Thermochemical Tables, 4th edn, Part I, Al-Co (New York: American Institute of Physics)
[54] Feller D, Peterson K A, de Jong W A and Dixon D A 2003 J. Chem. Phys. 118 3510
[55] Peterson K A, Shepler B C, Figgen D and Stoll H 2006 J. Phys. Chem. A 110 13877
[56] DeYonker N J, Peterson K A and Wilson A K 2007 J. Phys. Chem. A 111 11383
[57] Shim I, Mandix K and Gingerich K A 1991 J. Phys. Chem. 95 5435
[58] Kingcade J E, Nagarathna-Naik H M, Shim I and Gingerich K A 1986 J. Phys. Chem. 90 2830
[59] Zavitsas A A 2003 J. Phys. Chem. A 107 897
[1] All-electron ZORA triple zeta basis sets for the elements Cs-La and Hf-Rn
Antônio Canal Neto, Francisco E. Jorge, and Henrique R. C. da Cruz. Chin. Phys. B, 2023, 32(9): 093101.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .
[10] Qianghua Rao(饶强华), Hui Chen(陈辉), Sanqiu Liu(刘三秋), and Xiaochang Chen(陈小昌). Ion acoustic solitary waves in an adiabatic dusty plasma: Roles of superthermal electrons, ion loss and ionization[J]. Chin. Phys. B, 2024, 33(8): 85201 -085201 .