Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017302    DOI: 10.1088/1674-1056/ad01a7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts

Su-Yu Xu(徐宿雨)1, Miao Yu(于淼)1,†, Dong-Yang Yuan(袁东阳)2, Bo Peng(彭博)1, Lei Yuan(元磊)1, Yu-Ming Zhang(张玉明)1, and Ren-Xu Jia(贾仁需)1,‡
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 The 13 th Research Institute China Electronics Technology Group Corporation, Shijiazhuang 050051, China
Abstract  The formation of low-resistance Ohmic contacts in Ga2O3 is crucial for high-performance electronic devices. Conventionally, a titanium/gold (Ti/Au) electrode is rapidly annealed to achieve Ohmic contacts, resulting in mutual diffusion of atoms at the interface. However, the specific role of diffusing elements in Ohmic contact formation remains unclear. In this work, we investigate the contribution of oxygen atom diffusion to the formation of Ohmic contacts in Ga2O3. We prepare a Ti/Au electrode on a single crystal substrate and conduct a series of electrical and structural characterizations. Using density functional theory, we construct a model of the interface and calculate the charge density, partial density of states, planar electrostatic potential energy, and IV characteristics. Our results demonstrate that the oxygen atom diffusion effectively reduces the interface barrier, leading to low-resistance Ohmic contacts in Ga2O3. These findings provide valuable insights into the underlying mechanisms of Ohmic contact formation and highlight the importance of considering the oxygen atom diffusion in the design of Ga2O3-based electronic devices.
Keywords:  Ga2O3      Ohmic contacts      oxygen diffusion      density functional theory  
Received:  02 August 2023      Revised:  18 September 2023      Accepted manuscript online:  07 October 2023
PACS:  73.61.Le (Other inorganic semiconductors)  
  73.40.Ns (Metal-nonmetal contacts)  
  66.30.J- (Diffusion of impurities ?)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 61874084, 61974119, and U21A20501).
Corresponding Authors:  Miao Yu, Ren-Xu Jia     E-mail:  myuxidian@163.com;rxjia@mail.xidian.edu.cn

Cite this article: 

Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需) Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts 2024 Chin. Phys. B 33 017302

[1] Guo D, Guo Q, Chen Z, Wu Z, Li P and Tang W 2016 J. Appl. Phys. 55 1202
[6] Ueda N, Hosono H, Waseda R and Kawazoe H 1997 Appl. Phys. Lett. 70 3561
[7] Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T and Aoki K 2008 Appl. Phys. Lett. 92 202120
[8] Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K and Shishido T 2007 Phys. Status Solidi C 4 2310
[9] Ohira S, Suzuki N, Arai N, Tanaka M, Sugawara T, Nakajima K and Shishido T 2008 Thin Solid Films 516 5763
[10] Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K and Speck J S 2017 Appl. Phys. Express 10 041102
[11] Hwang W S, Verma A, Peelaers H, Protasenko V, Rouvimov S, Seabaugh A, Haensch W, de Walle C V, Galazka Z, Albrecht M, Fornari R and Jena D 2014 Appl. Phys. Lett. 104 203111
[12] Higashiwaki M, Sasaki K, Kamimura T, Wong M H and Krishnamurthy D 2013 Appl. Phys. Lett. 103 123511
[13] Chang P C, Fan Z, Tseng W Y, Rajagopal A and Lu J G 2005 Appl. Phys. Lett. 87 222102
[14] Farzana E, Zhang Z, Paul P K, Arehart A R and Ringel S A 2017 Appl. Phys. Lett. 110 202102
[15] Mann D, Javey A, Kong J, Wang Q and Dai H 2003 Nano Lett. 3 1541
[16] English C D, Shine G, Dorgan V E, Saraswat K C and Pop E 2016 Nano Lett. 16 3824
[17] Yao Y, Davis R F and Porter L M 2017 J. Electron. Mater. 46 2053
[18] Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C, Lu H L and Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127
[19] Xia Z, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y, Brenner M, Lodha S and Rajan S 2018 IEEE Electron Dev. Lett. 39 568
[20] Carey P H, Yang J, Ren F, Hays D C, Pearton S J, Jang S, Kuramata A and Kravchenko I I 2017 AIP Adv. 7 095313
[21] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Express 6 086502
[22] Lee M H and Peterson R L 2019 APL Mater. 7 022524
[23] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[24] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39
[25] Reeves G K and Harrison H B 1982 IEEE Electron Dev. Lett. 3 111
[26] Kurtz R L and Henrich V E 1998 Surf. Sci. Spectra 5 179
[27] Egerton R F 2008 Rep. Prog. Phys. 72 016502
[28] Hofer F, Schmidt F, Grogger W and Kothleitner G 2015 Proceedings of the IOP Conference Series:Materials Science and Engineering (Portorož:IOP Publishing Ltd) pp. 3-7
[29] Henderson G S, Liu X and Fleet M E 2002 Phys. Chem. Miner. 29 32
[30] Matsumoto T, Aoki M, Kinoshita A and Aono T 1974 J. Appl. Phys. 13 1578
[31] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photon. 4 2203
[32] Dang J N, Zheng S W, Chen L and Zheng T 2019 Chin. Phys. B 28 016301
[33] Greenwood N N and Earnshaw A 2012 Elements (Que) (Elsevier)
[34] Hou J, Guo R, Su J, Du Y, Lin Z, Zhang J, Hao Y and Chang J 2021 Phys. Chem. Chem. Phys. 23 5975
[35] Stradi D, Martinez U, Blom A, Brandbyge M and Stokbro K 2016 Phys. Rev. B 93 155302
[36] Smidstrup S, Stradi D, Wellendorff J, Khomyakov P A, Vej-Hansen U G, Lee M E, Ghosh T, Jonsson E, Jonsson H and Stokbro K 2017 Phys. Rev. B 96 195309
[1] Local thermal conductivity of inhomogeneous nano-fluidic films: A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[2] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[3] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[4] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[5] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[6] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[7] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[8] NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌). Chin. Phys. B, 2023, 32(9): 098502.
[9] The growth and expansive applications of amorphous Ga2O3
Zhao-Ying Xi(奚昭颖), Li-Li Yang(杨莉莉), Lin-Cong Shu(舒林聪), Mao-Lin Zhang(张茂林), Shan Li(李山), Li Shi(史丽), Zeng Liu(刘增), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(8): 088502.
[10] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[11] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[12] One ε-Ga2O3-based solar-blind Schottky photodetector emphasizing high photocurrent gain and photocurrent-intensity linearity
Yue-Hua An(安跃华), Zhen-Sen Gao(高震森), Yu Guo(郭雨), Shao-Hui Zhang(张少辉), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(5): 058502.
[13] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[14] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[15] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
No Suggested Reading articles found!