CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs |
Xianyong Ding(丁献勇)1,2, Haoran Wei(魏皓然)1,2, Ruixiang Zhu(朱瑞翔)1,2, Xiaoliang Xiao(肖晓亮)1,2, Xiaozhi Wu(吴小志)1,2, and Rui Wang(王锐)1,2,† |
1 Institute for Structure and Function & Department of Physics & Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China; 2 Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, China |
|
|
Abstract The realization of 100% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density functional theory and dynamical mean field theory, we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the ${\rm DFT} + U$ regime with effect $U$ values ranging from 1.5 eV to 2.5 eV. Meanwhile, we also investigate the magnetization-dependent topological properties; the results show that the change of magnetization directions only slightly affects the positions of Weyl points, which is attributed to the weak spin-orbital coupling effects. The topological surface states of VAs projected on semi-infinite (001) and (111) surfaces are investigated. The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces. Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective $U$ values range from 1.5 eV to 2.5 eV.
|
Received: 15 May 2024
Revised: 03 July 2024
Accepted manuscript online: 05 July 2024
|
PACS:
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204074, 12222402, 92365101,and 12347101) and the Natural Science Foundation of Chongging (Grant No. CSTB2023NSCQ-JQX0024). |
Corresponding Authors:
Rui Wang
E-mail: rcwang@cqu.edu.cn
|
Cite this article:
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐) Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs 2024 Chin. Phys. B 33 097103
|
[1] De Groot R, Mueller F, van Engen P V and Buschow K 1983 Phys. Rev. Lett. 50 2024 [2] De Groot R, Mueller F, Van Engen P and Buschow K 1984 J. Appl. Phys. 55 2151 [3] De Groot R and Buschow K 1986 J. Magn. Magn. Mater. 54 1377 [4] Benmakhlouf A, Bourourou Y, Bouhemadou A, Bentabet A, Khemloul F, Maabed S, Bouchenafa M and Galanakis I 2018 J. Magn. Magn. Mater. 465 430 [5] Ş aşioglu E, Galanakis I, Sandratskii L M and Bruno P 2005 J. Phys. Condens. Matter. 17 3915 [6] Irkhin V Y and Katsnel’son M I 1994 Phys. Usp. 37 659 [7] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [8] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813 [9] Soulen Jr R, Byers J, Osofsky M, Nadgorny B, Ambrose T, Cheng S, Broussard P R, Tanaka C, Nowak J, Moodera J, et al. 1998 Science 282 85 [10] Korotin M, Anisimov V, Khomskii D and Sawatzky G 1998 Phys. Rev. Lett. 80 4305 [11] Yanase A and Siratori K 1984 J. Phys. Soc. Jpn. 53 312 [12] Galanakis I, Dederichs P and Papanikolaou N 2002 Phys. Rev. B 66 134428 [13] Galanakis I, Dederichs P and Papanikolaou N 2002 Phys. Rev. B 66 174429 [14] Galanakis I 2004 J. Phys. Condens. Matter. 16 3089 [15] Shreder E, Streltsov S, Svyazhin A, Makhnev A, Marchenkov V, Lukoyanov A and Weber H 2008 J. Phys. Condens. Matter. 20 045212 [16] Fomina K, Marchenkov V, Shreder E and Weber H 2011 Solid State Phenom. 168 545 [17] Shreder E, Makhnev A, Lukoyanov A and Suresh K 2017 Phys. Met. Metallogr. 118 965 [18] Lidig C, Minár J, Braun J, Ebert H, Gloskovskii A, Krieger J A, Strocov V, Kläui M and Jourdan M 2019 Phys. Rev. B 99 174432 [19] Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schönhense G, et al. 2014 Nat. Commun. 5 3974 [20] Akai H 1998 Phys. Rev. Lett. 81 3002 [21] Sandratskii L and Bruno P 2002 Phys. Rev. B 66 134435 [22] Wang X L 2008 Phys. Rev. Lett. 100 156404 [23] Ouardi S, Fecher G H, Felser C and Kübler J 2013 Phys. Rev. Lett. 110 100401 [24] Manna K, Sun Y, Muechler L, Kübler J and Felser C 2018 Nat. Rev. Mater. 3 244 [25] Wang X L 2017 Natl. Sci. Rev. 4 252 [26] Cheng X, Xu S, Jia F, Zhao G, Hu M, Wu W and Ren W 2021 Phys. Rev. B 104 104417 [27] Mogulkoc A, Modarresi M and Rudenko A N 2020 Phys. Rev. B 102 024441 [28] Hedin L 1965 Phys. Rev. 139 A796 [29] Damewood L and Fong C Y 2011 Phys. Rev. B 83 113102 [30] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S, et al. 2022 Chin. Phys. Lett. 39 127301 [31] Xiang W, Wang Y, Ji W, Hou W, Li S and Wang P 2023 Chin. Phys. B 32 037103 [32] Galanakis I and Mavropoulos P 2003 Phys. Rev. B 67 104417 [33] Akinaga H, Manago T and Shirai M 2000 Jpn. J. Appl. Phys. 39 L1118 [34] Shirai M 2003 J. Appl. Phys. 93 6844 [35] Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z and Xu X 2023 Chin. Phys. Lett. 40 087301 [36] Sanyal B, Bergqvist L and Eriksson O 2003 Phys. Rev. B 68 054417 [37] Chioncel L, Mavropoulos P, Lezaić M, Blügel S, Arrigoni E, Katsnelson M I and Lichtenstein A I 2006 Phys. Rev. Lett. 96 197203 [38] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [39] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 [40] Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, et al. 2015 Phys. Rev. X 5 031013 [41] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljačić M 2015 Science 349 622 [42] Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, et al. 2015 Nat. Phys. 11 748 [43] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, et al. 2019 Nat. Commun. 10 3424 [44] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [45] Wang Z, Vergniory M, Kushwaha S, Hirschberger M, Chulkov E, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401 [46] Nie S, Hashimoto T and Prinz F B 2022 Phys. Rev. Lett. 128 176401 [47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [48] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 [49] See supplementary material for the theoretical background of DFT + DMFT methods, the calculations details, list of the positions of WPs, topological surface states and Fermi arcs, etc., which include Refs. [47,48,54-65]. [50] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349 [51] Haule K 2007 Phys. Rev. B 75 155113 [52] Yu R, Wu Q, Fang Z and Weng H 2017 Phys. Rev. Lett. 119 036401 [53] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205 [54] Singh V, Herath U, Wah B, Liao X, Romero A H and Park H 2021 Comput. Phys. Commun. 261 107778 [55] Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101 [56] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865 [57] Jarrell M 1992 Phys. Rev. Lett. 69 168 [58] Shinaoka H, Assaad F, Blumer N and Werner P 2017 Eur. Phys. J. Spec. Top. 226 2499 [59] Kohn W and Lüttinger J M 1960 Phys. Rev. 118 41 [60] Luttinger J M and Ward J C 1960 Phys. Rev. 118 1417 [61] Luttinger J M 1961 Phys. Rev. 121 942 [62] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [63] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [64] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [65] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|