Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097103    DOI: 10.1088/1674-1056/ad5f86
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs

Xianyong Ding(丁献勇)1,2, Haoran Wei(魏皓然)1,2, Ruixiang Zhu(朱瑞翔)1,2, Xiaoliang Xiao(肖晓亮)1,2, Xiaozhi Wu(吴小志)1,2, and Rui Wang(王锐)1,2,†
1 Institute for Structure and Function & Department of Physics & Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China;
2 Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, China
Abstract  The realization of 100% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density functional theory and dynamical mean field theory, we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the ${\rm DFT} + U$ regime with effect $U$ values ranging from 1.5 eV to 2.5 eV. Meanwhile, we also investigate the magnetization-dependent topological properties; the results show that the change of magnetization directions only slightly affects the positions of Weyl points, which is attributed to the weak spin-orbital coupling effects. The topological surface states of VAs projected on semi-infinite (001) and (111) surfaces are investigated. The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces. Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective $U$ values range from 1.5 eV to 2.5 eV.
Keywords:  density functional theory      Weyl semimetal      dynamical mean field theory      half metallic ferromagnet  
Received:  15 May 2024      Revised:  03 July 2024      Accepted manuscript online:  05 July 2024
PACS:  71.55.Ak (Metals, semimetals, and alloys)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204074, 12222402, 92365101,and 12347101) and the Natural Science Foundation of Chongging (Grant No. CSTB2023NSCQ-JQX0024).
Corresponding Authors:  Rui Wang     E-mail:  rcwang@cqu.edu.cn

Cite this article: 

Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐) Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs 2024 Chin. Phys. B 33 097103

[1] De Groot R, Mueller F, van Engen P V and Buschow K 1983 Phys. Rev. Lett. 50 2024
[2] De Groot R, Mueller F, Van Engen P and Buschow K 1984 J. Appl. Phys. 55 2151
[3] De Groot R and Buschow K 1986 J. Magn. Magn. Mater. 54 1377
[4] Benmakhlouf A, Bourourou Y, Bouhemadou A, Bentabet A, Khemloul F, Maabed S, Bouchenafa M and Galanakis I 2018 J. Magn. Magn. Mater. 465 430
[5] Ş aşioglu E, Galanakis I, Sandratskii L M and Bruno P 2005 J. Phys. Condens. Matter. 17 3915
[6] Irkhin V Y and Katsnel’son M I 1994 Phys. Usp. 37 659
[7] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[8] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
[9] Soulen Jr R, Byers J, Osofsky M, Nadgorny B, Ambrose T, Cheng S, Broussard P R, Tanaka C, Nowak J, Moodera J, et al. 1998 Science 282 85
[10] Korotin M, Anisimov V, Khomskii D and Sawatzky G 1998 Phys. Rev. Lett. 80 4305
[11] Yanase A and Siratori K 1984 J. Phys. Soc. Jpn. 53 312
[12] Galanakis I, Dederichs P and Papanikolaou N 2002 Phys. Rev. B 66 134428
[13] Galanakis I, Dederichs P and Papanikolaou N 2002 Phys. Rev. B 66 174429
[14] Galanakis I 2004 J. Phys. Condens. Matter. 16 3089
[15] Shreder E, Streltsov S, Svyazhin A, Makhnev A, Marchenkov V, Lukoyanov A and Weber H 2008 J. Phys. Condens. Matter. 20 045212
[16] Fomina K, Marchenkov V, Shreder E and Weber H 2011 Solid State Phenom. 168 545
[17] Shreder E, Makhnev A, Lukoyanov A and Suresh K 2017 Phys. Met. Metallogr. 118 965
[18] Lidig C, Minár J, Braun J, Ebert H, Gloskovskii A, Krieger J A, Strocov V, Kläui M and Jourdan M 2019 Phys. Rev. B 99 174432
[19] Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schönhense G, et al. 2014 Nat. Commun. 5 3974
[20] Akai H 1998 Phys. Rev. Lett. 81 3002
[21] Sandratskii L and Bruno P 2002 Phys. Rev. B 66 134435
[22] Wang X L 2008 Phys. Rev. Lett. 100 156404
[23] Ouardi S, Fecher G H, Felser C and Kübler J 2013 Phys. Rev. Lett. 110 100401
[24] Manna K, Sun Y, Muechler L, Kübler J and Felser C 2018 Nat. Rev. Mater. 3 244
[25] Wang X L 2017 Natl. Sci. Rev. 4 252
[26] Cheng X, Xu S, Jia F, Zhao G, Hu M, Wu W and Ren W 2021 Phys. Rev. B 104 104417
[27] Mogulkoc A, Modarresi M and Rudenko A N 2020 Phys. Rev. B 102 024441
[28] Hedin L 1965 Phys. Rev. 139 A796
[29] Damewood L and Fong C Y 2011 Phys. Rev. B 83 113102
[30] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S, et al. 2022 Chin. Phys. Lett. 39 127301
[31] Xiang W, Wang Y, Ji W, Hou W, Li S and Wang P 2023 Chin. Phys. B 32 037103
[32] Galanakis I and Mavropoulos P 2003 Phys. Rev. B 67 104417
[33] Akinaga H, Manago T and Shirai M 2000 Jpn. J. Appl. Phys. 39 L1118
[34] Shirai M 2003 J. Appl. Phys. 93 6844
[35] Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z and Xu X 2023 Chin. Phys. Lett. 40 087301
[36] Sanyal B, Bergqvist L and Eriksson O 2003 Phys. Rev. B 68 054417
[37] Chioncel L, Mavropoulos P, Lezaić M, Blügel S, Arrigoni E, Katsnelson M I and Lichtenstein A I 2006 Phys. Rev. Lett. 96 197203
[38] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[39] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[40] Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, et al. 2015 Phys. Rev. X 5 031013
[41] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljačić M 2015 Science 349 622
[42] Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, et al. 2015 Nat. Phys. 11 748
[43] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, et al. 2019 Nat. Commun. 10 3424
[44] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[45] Wang Z, Vergniory M, Kushwaha S, Hirschberger M, Chulkov E, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
[46] Nie S, Hashimoto T and Prinz F B 2022 Phys. Rev. Lett. 128 176401
[47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[48] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[49] See supplementary material for the theoretical background of DFT + DMFT methods, the calculations details, list of the positions of WPs, topological surface states and Fermi arcs, etc., which include Refs.
[47,48,54-65].
[50] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[51] Haule K 2007 Phys. Rev. B 75 155113
[52] Yu R, Wu Q, Fang Z and Weng H 2017 Phys. Rev. Lett. 119 036401
[53] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
[54] Singh V, Herath U, Wah B, Liao X, Romero A H and Park H 2021 Comput. Phys. Commun. 261 107778
[55] Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101
[56] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[57] Jarrell M 1992 Phys. Rev. Lett. 69 168
[58] Shinaoka H, Assaad F, Blumer N and Werner P 2017 Eur. Phys. J. Spec. Top. 226 2499
[59] Kohn W and Lüttinger J M 1960 Phys. Rev. 118 41
[60] Luttinger J M and Ward J C 1960 Phys. Rev. 118 1417
[61] Luttinger J M 1961 Phys. Rev. 121 942
[62] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[63] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[64] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[65] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[1] Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder
Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷). Chin. Phys. B, 2024, 33(9): 097502.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[4] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[5] Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn
Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(6): 067102.
[6] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[7] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[8] Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4
Zhuo-Cheng Lu(卢倬成) and Ji Feng(冯济). Chin. Phys. B, 2024, 33(4): 047303.
[9] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[10] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[11] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[12] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[13] Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems
Guangdi Zhang(张广迪), Li Mao(毛力), and Hongxing Xu(徐红星). Chin. Phys. B, 2024, 33(10): 107101.
[14] Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory
Xin Qu(瞿鑫), Peng Xu(许鹏), Zhiyong Liu(刘志勇), Jintao Wang(王金涛), Fei Wang(王飞), Wei Huang(黄威), Zhongxin Li(李忠星), Weichang Xu(徐卫昌), and Xinguo Ren(任新国). Chin. Phys. B, 2024, 33(10): 107106.
[15] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
No Suggested Reading articles found!