Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066106    DOI: 10.1088/1674-1056/aca7ec
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory

Lei-Lei Tang(唐雷雷)1, Shun-Ping Shi(史顺平)1,†, Yong Song(宋永)1,‡, Jia-Bao Hu(胡家宝)1, Kai Diao(刁凯)1, Jing Jiang(蒋静)1, Zhan-Jiang Duan(段湛江)1, and De-Liang Chen(陈德良)2
1 College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China;
2 School of Physics and Electronics, Guizhou Education University, Guiyang 550018, China
Abstract  Density functional theory (DFT) is used to calculate the most stable structures of Zr$_{n }$ ($n=2$-5) clusters as well as the adsorption energy values of Zr$_{n }$ ($n=2$-5) clusters after adsorbing single water molecule. The results reveal that there is a significant linear relationship between the adsorption energy values and the energy gaps of the Zr$_{n }$ ($n=2$-5) clusters. Furthermore, the calculations of the reaction paths between Zr$_{n}$ ($n=2$-5) and single water molecule show that water molecule can react with Zr$_{n}$ ($n=2$-5) clusters to dissociate, producing hydrogen, and O atoms mix with the clusters to generate Zr$_{n}$O ($n=2$-5), all of which are exothermic reactions. According to the released energy, the Zr$_{4}$ cluster is the most efficient in Zr$_{n}$ ($n=2$-5) clusters reacting with single water molecule. The natural population analysis (NPA) and density of states (DOS) demonstrate the production of hydrogen and orbital properties in different energy ranges, respectively, jointly forecasting that Zr$_{n}$O ($n= 2$-5) will probably continue to react with more water molecules. Our findings contribute to better understanding of Zr's chemical reactivity, which can conduce to the development of effective Zr-based catalysts and hydrogen-production methods.
Keywords:  density functional theory      hydrogen evolution reaction      NBO analysis      reaction pathways  
Received:  26 September 2022      Revised:  14 November 2022      Accepted manuscript online:  02 December 2022
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
Fund: Project supported by the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. YBXYJSWL-ZD-2020-005) and the Student’s Platform for Innovation and Entrepreneurship Training Program, China (Grant No. S202110616084).
Corresponding Authors:  Shun-Ping Shi, Yong Song     E-mail:  shishunping13@cdut.edu.cn;syong@cdut.edu.cn

Cite this article: 

Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良) Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory 2023 Chin. Phys. B 32 066106

[1] Guvelioglu G H, Ma P, He X, Forrey R C and Cheng H2006 Phys. Rev. B 73 155437
[2] Nie A H, Wu J P, Zhou C G, Yao S J, Forrey, R C and Cheng H2007 Int. J. Quantum Chem. 10 7219
[3] Yin Q K, Yang C L, Wang M S and Ma X G2021 J. Mater. Chem. C 9 12231
[4] Zhang C F, Yang C L, Wang M S and Ma X G2022 J. Mater. Chem. C 10 5474
[5] Wang F, Yang C L, Wang M S and Ma X G2022 J. Power Sources 532 231352
[6] Sun R, Yang C L, Wang M S and Ma X G2022 J. Power Sources 547 232008
[7] Zhou R L, Yang Y, Pande S, Qu B Y, Li D D and Zeng X Z2019 Phys. Chem. Chem. Phys. 21 4006
[8] Lei J L, Shi S P, Guo W, Wan M J, Yan M, Liu Y L and Li X2021 Int. J. Hydrog. Energy 46 12693
[9] Li K N, Yang C L, Han Y X, Wang M S, Ma X G and Wang L Z2021 Energy 106 131
[10] Li K N, Yang C L, Wang M S, Ma X G and Wang L Z2016 Int. J. Hydrog. Energy 41 17858
[11] Sheng X F, Zhao G F and Zhi L L2008 J. Phys. Chem. C 112 17828
[12] Chen P, He X H, Pang M B, Dong X T, Zhao S and Zhang W2020 Appl. Mater. Interfaces 12 20429
[13] Duan Z G. Yang H L, Satoh Y, Murakami K, Kano S, Zhao Z S, Shen J J and Abe H2017 Nucl. Eng. Des. 316 131
[14] Kim H G, Yang J H, Kim W J and Koo Y H2016 Nucl. Eng. Technol. 48 1
[15] Ribis J, Wu A and Brachet J C2018 J. Mater. Sci. 53 9879
[16] Zinkle S J and Was G S2013 Acta Mater. 61 735
[17] Wei Z, Zhai D, Shao X H, Lu Y and Zhang P2015 Chin. Phys. B 24 043102
[18] Srikanth M, Annamalai A R, Muthuchamy A and Jen C P2021 Crystals 11 612
[19] Yang X Y, Lu Y, Zheng F W and Zhang P2015 Chin. Phys. B 24 116301
[20] Fahrenholtz W G and Hilmas G E2017 Scr. Mater. 129 94
[21] Montesinos-Castellanos A and Zepeda T A2008 Microporous Mesoporous Mat. 113 146
[22] Skoda D, Styskalik A and Moravec, Z2015 J. Mater. Sci. 50 3371
[23] Fernández-Morales J M, Lozano L A, Castillejos-López E, Rodríguez-Ramos I, Guerrero-Ruiz A and Zamaro J M2019 Microporous Mesoporous Mat. 290 109686
[24] Narayanan S, Krishnan M S and Vishwanathan V1995 J. Mater. Sci. 30 6355
[25] Khann M A, Wang N, Zhang L H, Guo X Y and Huang S P2020 Comput. Theor. Chem. 188 112940
[26] Syzgantseva O, Calatayud M and Minot C2011 Chem. Phys. Lett. 503 12
[27] Wang F and Gong H R2012 Int. J. Hydrog. Energy 37 9688
[28] Wang C C, Zhao R N and Han J G2006 J. Chem. Phys. 124 194301
[29] Wang X Q, Jiang Z Y, Li J Q, He Q L and Chu S Y2011 Int. J. Quantum Chem. 111 182
[30] AD B1993 J. Chem. Phys. 98 5648
[31] A D B1998 Phys. Rev. A 38 3098
[32] Lee C, Yang W and Parr R G1988 Phys. Rev. B 37 785
[33] Bandyopadhyay D2008 J. Appl. Phys. 104 084308
[34] Bandyopadhyay D and Kumar M2008 Chem. Phys. 353 170
[35] He C, Chen L and Sheng Y2019 Eur. Phys. J. D 73 90
[36] Jin R and Chen X H2010 Acta Phys. Sin. 59 6955 (in Chinese)
[37] Kagdada H L, Dabhi S D, Mankad V, Shinde S M and Jha P K2020 Mater. Chem. Phys. 239 122264
[38] Krishnan R, Seeger B J and Pople J A1980 J. Chem. Phys. 72 650
[39] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Revision A.03
[40] Glendening E D, Reed A E, Carpenter J E and Weinhold F 2009 NBO Version 3.1
[41] Lu T and Chen F W2012 J. Comput. Chem. 33 580
[42] Humphrey W, Dalke A and Schulten K1996 J. Mol. Graph. 14 33
[1] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!