Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film |
Wooseon Choi1,†, Bumsu Park2,†, Jaejin Hwang3,†, Gyeongtak Han4, Sang-Hyeok Yang1, Hyeon Jun Lee5, Sung Su Lee6, Ji Young Jo6, Albina Y. Borisevich7, Hu Young Jeong8, Sang Ho Oh9,‡, Jaekwang Lee3,§, and Young-Min Kim1,¶ |
1 Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; 2 Samsung Electronics, Hwaseong 18448, Republic of Korea; 3 Department of Physics, Pusan National University, Busan 46241, Republic of Korea; 4 LG Energy Solution, Daejeon 34122, Republic of Korea; 5 Department of Materials Science and Engineering, Kangwon National University, Republic of Korea; 6 School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; 7 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, TN 37831, USA; 8 Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; 9 Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea |
|
|
Abstract The functionalities and diverse metastable phases of multiferroic BiFeO$_{3}$ (BFO) thin films depend on the misfit strain. Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known, it is unclear whether a single-crystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs. Thus, understanding the strain relaxation behavior is key to elucidating the lattice strain-property relationship. In this study, a correlative strain analysis based on dark-field inline electron holography (DIH) and quantitative scanning transmission electron microscopy (STEM) was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film. The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief, forming irregularly strained nanodomains. The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale. The globally integrated strain for each nanodomain was estimated to be close to $-1.5%$, irrespective of the nanoscale strain states, which was consistent with the fully strained BFO film on the SrTiO$_{3}$ substrate. Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation. This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films, such as BFO, with various low-symmetry polymorphs.
|
Received: 22 April 2024
Revised: 10 July 2024
Accepted manuscript online: 15 July 2024
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
61.05.jp
|
(Electron holography)
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
Fund: Project supported by Samsung Research Fundings & Incubation Center of Samsung Electronics (Grant No. SRFCMA1702-01). Y.-M.K acknowledges partial support from the National Research Foundation of Korea (NRF) (Grant No. 2023R1A2C2002403) funded by the Korean government in Korea. |
Corresponding Authors:
Sang Ho Oh, Jaekwang Lee, Young-Min Kim
E-mail: shoh@kentech.ac.kr;jaekwangl@pusan.ac.kr;youngmk@skku.edu
|
Cite this article:
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film 2024 Chin. Phys. B 33 096805
|
[1] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Annu. Rev. Mater. Res. 37 589 [2] Hwang J, Feng Z, Charles N, Wang X R, Lee D, Stoerzinger K A, Muy S, Rao R R, Lee D, Jacobs R, Morgan D and Shao-Horn Y 2019 Mater. Today 31 100 [3] Ederer C and Spaldin N A 2005 Phys. Rev. Lett. 95 257601 [4] Catalan G, Lubk A, Vlooswiik A H G, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank D H A and Noheda B 2011 Nat. Mater. 10 963 [5] Chu K, Jang B K, Sung J H, Shin Y A, Lee E S, Song K, Lee J H. Woo C S, Kim S J, Kim S J, Choi S Y, Koo T Y, Kim Y H, Oh S H, Jo M H and Yang C H 2015 Nat. Nanotechnol. 10 972 [6] Jeon B C, Lee D, Lee M H, Yang S M, Chae S C, Song T K, Bu S D, Chung J S, Yoon J G and Noh T W 2013 Adv. Mater. 25 5643 [7] Béa H, Dupé B, Fusil S, Mattana R, Jacquet E, Warot-Fonrose B, Wilhelm F, Rogaley A, Petit S, Cors V, Anane A, Petroff F, Bouzehouane K, Geneste G, Dkhil B, Lisenkov S, Ponomareva I, Bellaiche L, Bibes M and Barthelemy A 2009 Phys. Rev. Lett. 102 217603 [8] Infante I C, Lisenkov S, Dupe B, Bibes M, Fusil S, Jacquet E, Geneste G, Petit S, Courtial A, Juraszek J, Bellaiche L, Barthelemy A and Dkhil B 2010 Phys. Rev. Lett. 105 057601 [9] Sando D, Agbelele A, Daumont C, Rahmedov D, Ren W, Infante I C, Lisenkov S, Prosandeev S, Fusil S, Jacquet E, Carrétéro C, Petit S, Cazayous M, Juraszek J, Breton J M L, Bellaiche L, Dhkil B, Barthélémy A and Bibes M 2014 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 372 20120438 [10] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21 [11] Dieguez O, Gonzalez-Vazquez O E, Wojdel J C and Iniguez J 2011 Phys. Rev. B 83 094106 [12] Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V and Borisevich A Y 2013 Adv. Mater. 25 2497 [13] Christen H M, Nam J H, Kim H S, Hatt A J and Spaldin N A 2011 Phys. Rev. B 83 144107 [14] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W and Ramesh R 2009 Science 326 977 [15] Chen Z, Luo A, Huang C, Yang Y Q P, You L, Hu C, Wu T, Wang J, Gao C, Sritharan T and Chen L 2011 Adv. Funct. Mater. 21 133 [16] Rossell M D, Erni R, Prange M P, Idrobo J C, Luo W, Zeches R J, Pantelides S T and Ramesh R 2012 Phys. Rev. Lett. 108 047601 [17] Yang Y, Schlepütz C M, Adamo C, Schlom D G and Clarke R 2013 APL Materials 1 052102 [18] Saito K, Ulyanenkov A, Grossmann V, Ress H, Bruegemann L, Ohta H, Kurosawa T, Ueki S and Funakubo H 2006 Jpn. J. Appl. Phys. 45 7311 [19] Kim D H, Lee H N, Biegalski M D and Christen H M 2008 Appl. Phys. Lett. 92 012911 [20] Chu Y H, Zhao T, Cruz M P, Zhan Q, Yang P L, Martin L W, Huijben M, Yang C H, Zavaliche F, Zheng H and Ramesh R 2007 Appl. Phys. Lett. 90 252906 [21] Lee H J, Lee S S, Kwak J H, Kim Y M, Jeong H Y, Borisevich A Y, Lee S Y, Noh D Y, Kwon O, Kim Y and Jo J Y 2016 Scientific Reports 6 38724 [22] Fischer A, Kühne H and Richter H 1994 Phys. Rev. Lett. 73 2712 [23] Kogan S M 1964 Sov. Phys. Solid State 5 2069 [24] Lee D and Noh Tae W 2012 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 370 4944 [25] Sando D, Barthelemy A and Bibes M 2014 J. Phys.-Condens. Matter 26 473201 [26] Holcomb M B, Martin L W, Scholl A, He Q, Yu P, Yang C H, Yang S Y, Glans P A, Valvidares M, Huijben M, Kortright J B, Guo J, Chu Y H and Ramesh R 2010 Phys. Rev. B 81 134406 [27] Lee S S, Kim YM, Lee H J, Seo O, Jeong H Y, He Q, Borisevich A Y, Kang B, Kwon O, Kang S, Kim Y, Koo T Y, Rhyee J S, Noh D Y, Cho B, Seo J H, Lee J H and Jo J Y 2018 Adv. Funct. Mater. 28 1800839 [28] Infante I C, Lisenkov S, Dupé B, Bibes M, Fusil S, Jacquet E, Geneste G, Petit S, Courtial A, Juraszek J, Bellaiche L, Barthélémy A and Dkhil B 2010 Phys. Rev. Lett. 105 057601 [29] Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C, Infante I C, Pyatakov A P, Fusil S, Jacquet E, Carretero C, Deranlot C, Lisenkov S, Wang D, Le Breton J M, Cazayous M, Sacuto A, Juraszek J, Zvezdin A K, Bellaiche L, Dkhil B, Barthelemy A and Bibes M 2013 Nat. Mater. 12 641 [30] Sando D, Xu B, Bellaiche L and Nagarajan V 2016 Appl. Phys. Rev. 3 011106 [31] Huang C W, Chu Y H, Chen Z H, Wang J, Sritharan T, He Q, Ramesh R and Chen L 2010 Appl. Phys. Lett. 97 152901 [32] Rana D S, Takahashi K, Mavani K R, Kawayama I, Murakami H, Tonouchi M, Yanagida T, Tanaka H and Kawai T 2007 Phys. Rev. B 75 060405 [33] Catalan G, Sinnamon L J and Gregg J M 2004 J. Phys.-Condes. Matter 16 2253 [34] Catalan G, Noheda B, McAnney J, Sinnamon L J and Gregg J M 2005 Phys. Rev. B 72 020102 [35] Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F and Noh T W 2011 Phys. Rev. Lett. 107 057602 [36] Kim Y M, He J, Biegalski M D, Ambaye H, Lauter V, Christen H M, Pantelides S T, Pennycook S J, Kalinin S V and Borisevich A Y 2012 Nat. Mater. 11 888 [37] Kim Y M, Morozovska A, Eliseev E, Oxley M P, Mishra R, Selbach S M, Grande T, Pantelides S T, Kalinin S V and Borisevich A Y 2014 Nat. Mater. 13 1019 [38] Hatt A J, Spaldin N A and Ederer C 2010 Phys. Rev. B 81 054109 [39] Hÿtch M J, Putaux JL and Peńisson JM 2003 Nature 423 270 [40] Tang Y L, Zhu Y L, Liu Y, Wang Y J and Ma X L 2017 Nat. Commun. 8 15994 [41] Kim Y M, Lee S B, Lee J and Oh S H 2019 Nanoscale 11 8281 [42] Lee J K, Park B, Song K, Jung W Y, Tyutyunnikov D, Yang T, Koch C T, Park C G, van Aken P A, Kim YM, Kim J K, Bang J, Chen L Q and Oh S H 2018 Acta. Mater. 145 109 [43] Zhang N and Asle Zaeem M 2019 npj Comput. Mater. 5 54 [44] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) [45] Daumont C J M, Farokhipoor S, Ferri A, WojdełJ C, Íniguez J, Kooi B J and Noheda B 2010 Phys. Rev. B 81 144115 [46] Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L and Chen L 2011 Phys. Rev. B 84 094116 [47] Borisevich A Y, Eliseev E A, Morozovska A N, Cheng C J, Lin J Y, Chu Y H, Kan D, Takeuchi I, Nagarajan V and Kalinin S V 2012 Nat. Commun. 3 775 [48] Koch C T 2002 Determination of core structure periodicity and point defect density along dislocation (Ph. D. Dissertation) (Arizona: Arizona State University) (in USA) [49] Kresse G and Furthmüller J 1993 Phys. Rev. B 54 11169 [50] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|