Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017303    DOI: 10.1088/1674-1056/ad053a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design

Xianglin Huang(黄香林), Ying Wang(王英), Huixiang Huang(黄慧香), Li Duan(段理), and Tingting Guo(郭婷婷)
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
Abstract  Different bilayer structures of HfOx/Ti(TiOx) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy, and the oxygen vacancies are analyzed. Highly improved on/off ratio (~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfOx sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfOx-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
Keywords:  HfOx film      resistive switching      structure design      interface modulation  
Received:  15 July 2023      Revised:  16 September 2023      Accepted manuscript online:  20 October 2023
PACS:  73.61.-r (Electrical properties of specific thin films)  
  73.40.Rw (Metal-insulator-metal structures)  
  68.55.-a (Thin film structure and morphology)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant No. 51802025) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JQ-384).
Corresponding Authors:  Tingting Guo     E-mail:  guott@chd.edu.cn

Cite this article: 

Xianglin Huang(黄香林), Ying Wang(王英), Huixiang Huang(黄慧香), Li Duan(段理), and Tingting Guo(郭婷婷) Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design 2024 Chin. Phys. B 33 017303

[1] Yoon J H, Kim K M, Song S J, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X and Hwang C S 2015 Adv. Mater. 27 3811
[2] Mahadevaiah M K, Perez E, Lisker M, Schubert M A, Quesada E P, Wenger C and Mai A 2022 Electronics 11 1540
[3] Quiroz H P, Calderón J A and Dussan A 2020 J. Alloys Compd. 840 155674
[4] Hu C, Wang Q, Bai S, Xu M, He D, Lyu D and Qi J 2017 Appl. Phys. Lett. 110 073501
[5] Jiao J L, Gan Q H, Cheng S, Liao Y, Ke S Y, Huang W, Wang J Y, Li C and Chen S Y 2021 Chin. Phys. B 30 118701
[6] Sokolov A S, Jeon Y R, Kim S, Ku B, Lim D, Han H, Chae M G, Lee J, Ha B G and Choi C 2018 Appl. Surf. Sci. 434 822
[7] Chen Y Y, Pourtois G, Adelmann C, Goux L, Govoreanu B, Degreave R, Jurczak M, Kittl J A, Groeseneken G and Wouters D J 2012 Appl. Phys. Lett. 100 113513
[8] Akbari M and Lee J S 2016 RSC Adv. 6 21917
[9] Kim J, Lee K, Kim Y, Na H, Ko D H, Sohn H and Lee S 2013 Mater. Chem. Phys. 142 608
[10] Hu C, Wang Q, Bai S, Xu M, He D, Lyu D and Qi J 2017 Appl. Phys. Lett. 110 073501
[11] Dirkmann S, Kaiser J, Wenger C and Mussenbrock T 2018 ACS Appl. Mater. Interfaces 10 14857
[12] Jiang R, Han Z and Du X 2016 Microelectron. Reliab. 63 37
[13] Li J C, Cui H P and Hou X Y 2018 J. Alloys Compd. 752 247
[14] Kim S, Chang Y F, Kim M H, Bang S, Kim T H, Chen Y C, Lee J H and Park B G 2017 Phys. Chem. Chem. Phys. 19 18988
[15] Wu W, Wu H, Gao B, Deng N, Yu S and Qian H 2017 IEEE Electron. Device Lett. 38 1019
[16] Ismaila M, Abbasb H, Choib C and Kim S 2020 Appl. Surf. Sci. 529 147107
[17] Islamov D R, Gritsenko V A, Cheng C H and Chin A 2014 Appl. Phys. Lett. 105 222901
[18] Gao S, Song C, Chen C, Zeng F and Pan F 2012 J. Phys. Chem. C 116 17955
[19] Sharath S U, Bertaud T, Kurian J, Hildebrandt E, Walczyk C, Calka P, Zaumseil P, Sowinska M, Walczyk D, Gloskovskii A, Schroeder T and Alff L 2014 Appl. Phys. Lett. 104 063502
[20] Huang C Y, Huang C Y, Tsai T L, Lin C and Tseng T Y 2014 Appl. Phys. Lett. 104 062901
[21] Shin J, Kim I, Biju K P, Jo M, Park J, Lee J, Jung S, Lee W, Kim S, Park S and Hwang H 2011 J. Appl. Phys. 109 033712
[22] Yeom S W, Shin S C, Kim T Y, Ha H J, Lee Y H, Shim J W and Ju B K 2016 Nanotechnology 27 07LT01
[23] Lin C C, Liao J W and Li W Y 2013 Ceram. Int. 39 S733
[24] Biesinger M C, Lau L W M, Gerson A R and Smart R S C 2010 Appl. Surf. Sci. 257 2717
[25] Mallol M M, Gonzalez M B and Campabadal F 2017 Microelectron. Eng. 178 168
[26] Ryu J H and Kim S 2020 Chaos Solitons Fract. 40 110236
[27] Wang S Y, Huang C W, Lee D Y, Tseng T Y and Chang T C 2010 J. Appl. Phys. 108 114110
[28] Jou S and Chao C L 2013 Surf. Coat. Technol. 231 311
[29] Huang R, Yan X, Ye S, Kashtiban R, Beanland R, Morgan K A, Charlton M D B and Groot C H D 2017 Nanoscale Res. Lett. 12 384
[30] Ismail M, Chand U, Mahata C, Nebhen J and Kim S 2022 J. Mater. Sci. Technol. 96 94
[31] Akbari M, Kim M K, Kim D and Lee J S 2017 RSC Adv. 7 16704
[32] Ye C, Deng T, Zhang J, Shen L, He P, Wei W and Wang H 2016 Semicond. Sci. Technol. 31 105005
[33] Zhou L W, Shao X L, Li X Y, Jiang H, Chen R, Yoon K J, Kim H J, Zhang K, Zhao J and Hwang C S 2015 Appl. Phys. Lett. 107 072901
[34] Kim K, Kim E, Kim Y, Sok J H and Park K 2016 J. Korean Phys. Soc. 69 1798
[35] Chen L, Dai Y W, Sun Q Q, Guo J J, Zhou P and Zhang D W 2015 Solid State Ionics 273 66
[1] Resistive switching properties of SnO2 nanowires fabricated by chemical vapor deposition
Ya-Qi Chen(陈亚琦), Zheng-Hua Tang(唐政华), Chun-Zhi Jiang(蒋纯志), and De-Gao Xu(徐徳高). Chin. Phys. B, 2023, 32(9): 097302.
[2] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[5] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[6] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[7] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[8] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
[9] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[10] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[11] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[12] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[13] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[14] Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures
Hao-Nan Liu(刘浩男), Xiao-Xia Suo(索晓霞), Lin-Ao Zhang(张林奥), Duan Zhang(张端), Han-Chun Wu(吴汉春), Hong-Kang Zhao(赵宏康), Zhao-Tan Jiang(江兆潭), Ying-Lan Li(李英兰), Zhi Wang(王志). Chin. Phys. B, 2018, 27(2): 027104.
[15] Atomic crystals resistive switching memory
Chunsen Liu(刘春森), David Wei Zhang(张卫), Peng Zhou(周鹏). Chin. Phys. B, 2017, 26(3): 033201.
No Suggested Reading articles found!