Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100502    DOI: 10.1088/1674-1056/aba2dc
General Prev   Next  

Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid

S Rosales1, N Casillas1, A Topete3, O Cervantes1, G Gonz\'alez1, J A Paz2, and M E Cano2,
1 Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara, Jalisco, México
2 Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, C. P. 47820, Ocotlán, Jalisco, México
3 Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, C. P. 44340, Guadalajara, Jalisco, México

The physical characterization of a colloidal system of superficially modified magnetic nanoparticles (MNPs) is presented. The system consists of oleic acid-coated iron oxide nanoparticles (OAMNP) suspended in water. A structural analysis is carried out by using standard physical techniques to determine the diameter and shape of the MNPs and also the width of the coating shell. The colloidal stability and the polydispersity index of this ferrofluid are determined by using Zeta potential measurements. Additionally, the magnetic characterization is conducted by obtaining the DC magnetization loops, and the blocking temperatures are determined according to the ZFC–FC protocol. Finally, the values of power absorption density P of the ferrofluid are estimated by using a magneto-calorimetric procedure in a wide range of magnetic field amplitude H and frequency f. The experimental results exhibit spherical-like shape of OAMNP with (20 ± 4) nm in diameter. Due to the use of coating process, the parameters of the magnetization loops and the blocking temperatures are significantly modified. Hence, while the uncoated MNPs show a blocking state of the magnetization, the OAMNP are superparamagnetic above room temperature (300 K). Furthermore, the reached dependence P versus f and P versus H of the ferrofluid with coated MNPs are clearly fitted to linear and quadratic correlations, respectively, showing their accordance with the linear response theory.

Keywords:  nanoparticles      ferrofluid      magnetic hyperthermia      functionalization  
Received:  01 February 2020      Revised:  13 June 2020      Accepted manuscript online:  06 July 2020
PACS:  05.70.-a (Thermodynamics)  
  47.65.Cb (Magnetic fluids and ferrofluids)  
  47.65.Cb (Magnetic fluids and ferrofluids)  
  87.85.jj (Biocompatibility)  
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano† Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid 2020 Chin. Phys. B 29 100502

Fig. 1.  

(a) Typical XRD spectra of uncoated (dark lines) and OAMNP (gray lines) samples, (b) close-up of the main peaks, (c) SEM micrograph of the OAMNP, (d) size distribution plot fitted to a normal data regression, (e) SEM of uncoated MNPs, and (f) corresponding plot including the data regression.

Fig. 2.  

FTIR spectra of uncoated Fe3O4 nanoparticles (dark), pure oleic acid (blue), and OAMNP (gray).

Fig. 3.  

(a) Relative mass M versus temperature of OAMNP over the interval 30 °C < T < 850 °C and (b) corresponding derivative in the same temperature interval.

Fig. 4.  

The pH-dependent (a) Zeta potential, (b) their corresponding hydrodynamic diameters, and (c) polydispersity index of water-suspended coated (open circles) and uncoated (black circles) MNPs.

Fig. 5.  

(a) Magnetization loops at room temperature of uncoated and coated MNPs, and (b) their corresponding ZFC–FC graphs using H = 100 Oe.

Fig. 6.  

Time dependent (a) temperature increment during 2 min applying H = 25 mT with five values of f, and (b) power density.

Fig. 7.  

(a) Temperature increment during 2 min applying f = 330 kHz with five steps of H, and (b) the dependence P versus H with the corresponding quadratic data regression.

Gupta A K, Gupta M 2005 Biomaterials 26 3995 DOI: 10.1016/j.biomaterials.2004.10.012
Wu W, Wu Z, Yu T, Jiang C, Kim W S 2015 Science and Technology of Advanced Materials 16 023501 DOI: 10.1088/1468-6996/16/2/023501
Babes L, Denizot B, Tanguy G, Le Jeune J J, Jallet P 1999 Journal of Colloid and Interface Science 212 482 DOI: 10.1006/jcis.1998.6053
Moore A, Marecos E, Bogdanov A Jr, Weissleder R 2000 Radiology 214 568 DOI: 10.1148/radiology.214.2.r00fe19568
Jordan A, Scholz R, Wust P, Fähling H, Felix R 1999 J. Magn. Magn. Mater. 201 413 DOI: 10.1016/S0304-8853(99)00088-8
Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R 1997 International Journal of Hyperthermia 13 587 DOI: 10.3109/02656739709023559
Weissleder R A, Stark D D, Engelstad B L, Bacon B R, Compton C C, White D L, Jacobs P, Lewis J 1989 American Journal of Roentgenology 152 167 DOI: 10.2214/ajr.152.1.167
Philipse A P, Van Bruggen M P, Pathmamanoharan C 1994 Langmuir 10 92 DOI: 10.1021/la00013a014
Shen L, Laibinis P E, Hatton T A 1999 Langmuir 15 447 DOI: 10.1021/la9807661
De Vicente J, Delgado A V, Plaza R C, Durán J D, González-Caballero F 2000 Langmuir 16 7954 DOI: 10.1021/la0003490
Dresco P A, Zaitsev V S, Gambino R J, Chu B 1999 Langmuir 15 1945 DOI: 10.1021/la980971g
Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J 2014 Ceram. Int. 40 1519 DOI: 10.1016/j.ceramint.2013.07.037
Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G 2014 J. Phys. Chem. C 118 16209 DOI: 10.1021/jp5037266
Petcharoen K, Sirivat A 2012 Mater. Sci. Eng. B 177 421 DOI: 10.1016/j.mseb.2012.01.003
Ahn T, Kim J H, Yang H M, Lee J W, Kim J D 2012 J. Phys. Chem. C 116 6069 DOI: 10.1021/jp211843g
Kievit F M, Stephen Z R, Veiseh O, Arami H, Wang T, Lai V P, Park J O, Ellenbogen R G, Disis M L, Zhang M 2012 ACS Nano 6 2591 DOI: 10.1021/nn205070h
Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi M L, Dubois P, Chourpa I 2010 J. Phys. Chem. C 114 5850 DOI: 10.1021/jp9112188
Kolen’ko Y V, Bañbre-Loóez M, Rodríguez-Abreu C, Carbó-Argibay E, Sailsman A, Piñiro-Redondo Y, Cerqueira M F, Petrovykh D Y, Kovnir K, Lebedev O I, Rivas J 2014 J. Phys. Chem. C 118 8691 DOI: 10.1021/jp500816u
Soares P I P, Laia C A T, Carvalho A, Pereira L C J, Coutinho J T, Ferreira I M M, Novo C M M, Borges J P 2016 Appl. Surf. Sci. 383 240 DOI: 10.1016/j.apsusc.2016.04.181
Yang K, Peng H, Wen Y, Li N 2010 Appl. Surf. Sci. 256 3093 DOI: 10.1016/j.apsusc.2009.11.079
Maity D, Agrawal D C 2007 J. Magn. Magn. Mater 308 46 DOI: 10.1016/j.jmmm.2006.05.001
Mahdavi M, Ahmad M B, Haron M J, Namvar F, Nadi B, Rahman M Z A, Amin J 2013 Molecules 18 7533 DOI: 10.3390/molecules18077533
Li Y, Ma F, Su X, Shi L, Pan B, Sun Z, Hou Y 2014 Industrial & Engineering Chemistry Research 53 6718 DOI: 10.1021/ie500216c
Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370 DOI: 10.1016/S0304-8853(02)00706-0
Carrey J, Mehdaoui B, Respaud M 2011 J. Appl. Phys. 109 083921 DOI: 10.1063/1.3551582
Dearing J A, Bird P M, Dann R J, Benjamin S F 1997 Geophys. J. Int. 13 727 DOI: 10.1111/j.1365-246X.1997.tb01867.x
Mazon E E, Villa-Martínez E, Hernández-Sámano A, Córdova-Fraga T, Ibarra-Sánchez J J, Calleja H A, Leyva Cruz J A, Barrera A, Estrada J C, Paz J A, Quintero L H 2017 Rev. Sci. Instrum. 88 084705 DOI: 10.1063/1.4998975
Mazon E E, Sámano A H, Calleja H, Quintero L H, Paz J A, Cano M E 2017 Measurement Science and Technology 28 095901 DOI: 10.1088/1361-6501/aa7be2
Armitage D W, Le Veen H H, Pethig R 1983 Phys. Med. Biol. 28 31 DOI: 10.1088/1361-6501/aa7be2
Ingham B 2015 Crystallography Reviews 21 229 DOI: 10.1080/0889311X.2015.1024114
Dorofeev G A, Streletskii A N, Povstugar I V, Protasov A V, Elsukov E P 2012 Colloid Journal 74 675 DOI: 10.1134/S1061933X12060051
Zhang L Y, Dou Y H, Zhang L, Gu H C 2007 Chin. Phys. Lett. 24 483 DOI: 10.1088/0256-307X/24/2/050
Zheng H, Yang Y, Wen F S, Yi H B, Zhou D, Li F S 2009 Chin. Phys. Lett. 26 017501 DOI: 10.1088/0256-307X/26/1/017501
Wang Z L, Ma H, Wang F, Li M, Zhang L G, Xu X H 2016 Chin. Phys. Lett. 33 107501 DOI: 10.1088/0256-307X/33/10/107501
Wu N, Fu L, Su M, Aslam M, Wong K C, Dravid V P 2004 Nano Lett. 4 383 DOI: 10.1021/nl035139x
Nor W F, Soh S K, Azmi A A, Yusof M S, Shamsuddin M 2017 Malaysian Journal of Analytical Sciences 2 768 DOI: 10.17576/mjas-2018-2205-04
El-Hilo M, Chantrell R W, O’Grady Y K 1998 J. Appl. Phys. 5114 DOI: 10.1063/1.368761
Dormann J L, Bessais L, Fiorani D 1988 J. Phys. C: Solid State Phys. 21 2015 DOI: 10.1088/0022-3719/21/10/019
Knobel M, Socolovsky L M, Vargas J M 2004 Rev. Mex. Fís. 50 8
Nunes W C, Cebollada F, Knobel M, Zanchet D 2006 J. Appl. Phys. 99 08N705 DOI: 10.1063/1.2164418
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[4] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[5] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[13] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[14] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[15] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
No Suggested Reading articles found!