|
|
Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid |
S Rosales1, N Casillas1, A Topete3, O Cervantes1, G Gonz\'alez1, J A Paz2, and M E Cano2,† |
1 Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara, Jalisco, México 2 Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, C. P. 47820, Ocotlán, Jalisco, México 3 Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, C. P. 44340, Guadalajara, Jalisco, México |
|
|
Abstract The physical characterization of a colloidal system of superficially modified magnetic nanoparticles (MNPs) is presented. The system consists of oleic acid-coated iron oxide nanoparticles (OAMNP) suspended in water. A structural analysis is carried out by using standard physical techniques to determine the diameter and shape of the MNPs and also the width of the coating shell. The colloidal stability and the polydispersity index of this ferrofluid are determined by using Zeta potential measurements. Additionally, the magnetic characterization is conducted by obtaining the DC magnetization loops, and the blocking temperatures are determined according to the ZFC–FC protocol. Finally, the values of power absorption density P of the ferrofluid are estimated by using a magneto-calorimetric procedure in a wide range of magnetic field amplitude H and frequency f. The experimental results exhibit spherical-like shape of OAMNP with (20 ± 4) nm in diameter. Due to the use of coating process, the parameters of the magnetization loops and the blocking temperatures are significantly modified. Hence, while the uncoated MNPs show a blocking state of the magnetization, the OAMNP are superparamagnetic above room temperature (300 K). Furthermore, the reached dependence P versus f and P versus H of the ferrofluid with coated MNPs are clearly fitted to linear and quadratic correlations, respectively, showing their accordance with the linear response theory.
|
Received: 01 February 2020
Revised: 13 June 2020
Accepted manuscript online: 06 July 2020
|
PACS:
|
05.70.-a
|
(Thermodynamics)
|
|
47.65.Cb
|
(Magnetic fluids and ferrofluids)
|
|
47.65.Cb
|
(Magnetic fluids and ferrofluids)
|
|
87.85.jj
|
(Biocompatibility)
|
|
Corresponding Authors:
†Corresponding author. E-mail: meduardo2001@hotmail.com
|
Cite this article:
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano† Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid 2020 Chin. Phys. B 29 100502
|
[1] |
|
[2] |
|
[3] |
Babes L, Denizot B, Tanguy G, Le Jeune J J, Jallet P 1999 Journal of Colloid and Interface Science 212 482 DOI: 10.1006/jcis.1998.6053
|
[4] |
|
[5] |
|
[6] |
Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R 1997 International Journal of Hyperthermia 13 587 DOI: 10.3109/02656739709023559
|
[7] |
Weissleder R A, Stark D D, Engelstad B L, Bacon B R, Compton C C, White D L, Jacobs P, Lewis J 1989 American Journal of Roentgenology 152 167 DOI: 10.2214/ajr.152.1.167
|
[8] |
|
[9] |
|
[10] |
De Vicente J, Delgado A V, Plaza R C, Durán J D, González-Caballero F 2000 Langmuir 16 7954 DOI: 10.1021/la0003490
|
[11] |
Dresco P A, Zaitsev V S, Gambino R J, Chu B 1999 Langmuir 15 1945 DOI: 10.1021/la980971g
|
[12] |
|
[13] |
Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G 2014 J. Phys. Chem. C 118 16209 DOI: 10.1021/jp5037266
|
[14] |
|
[15] |
Ahn T, Kim J H, Yang H M, Lee J W, Kim J D 2012 J. Phys. Chem. C 116 6069 DOI: 10.1021/jp211843g
|
[16] |
Kievit F M, Stephen Z R, Veiseh O, Arami H, Wang T, Lai V P, Park J O, Ellenbogen R G, Disis M L, Zhang M 2012 ACS Nano 6 2591 DOI: 10.1021/nn205070h
|
[17] |
Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi M L, Dubois P, Chourpa I 2010 J. Phys. Chem. C 114 5850 DOI: 10.1021/jp9112188
|
[18] |
Kolen’ko Y V, Bañbre-Loóez M, Rodríguez-Abreu C, Carbó-Argibay E, Sailsman A, Piñiro-Redondo Y, Cerqueira M F, Petrovykh D Y, Kovnir K, Lebedev O I, Rivas J 2014 J. Phys. Chem. C 118 8691 DOI: 10.1021/jp500816u
|
[19] |
Soares P I P, Laia C A T, Carvalho A, Pereira L C J, Coutinho J T, Ferreira I M M, Novo C M M, Borges J P 2016 Appl. Surf. Sci. 383 240 DOI: 10.1016/j.apsusc.2016.04.181
|
[20] |
|
[21] |
|
[22] |
Mahdavi M, Ahmad M B, Haron M J, Namvar F, Nadi B, Rahman M Z A, Amin J 2013 Molecules 18 7533 DOI: 10.3390/molecules18077533
|
[23] |
Li Y, Ma F, Su X, Shi L, Pan B, Sun Z, Hou Y 2014 Industrial & Engineering Chemistry Research 53 6718 DOI: 10.1021/ie500216c
|
[24] |
|
[25] |
Carrey J, Mehdaoui B, Respaud M 2011 J. Appl. Phys. 109 083921 DOI: 10.1063/1.3551582
|
[26] |
|
[27] |
Mazon E E, Villa-Martínez E, Hernández-Sámano A, Córdova-Fraga T, Ibarra-Sánchez J J, Calleja H A, Leyva Cruz J A, Barrera A, Estrada J C, Paz J A, Quintero L H 2017 Rev. Sci. Instrum. 88 084705 DOI: 10.1063/1.4998975
|
[28] |
Mazon E E, Sámano A H, Calleja H, Quintero L H, Paz J A, Cano M E 2017 Measurement Science and Technology 28 095901 DOI: 10.1088/1361-6501/aa7be2
|
[29] |
|
[30] |
|
[31] |
Dorofeev G A, Streletskii A N, Povstugar I V, Protasov A V, Elsukov E P 2012 Colloid Journal 74 675 DOI: 10.1134/S1061933X12060051
|
[32] |
|
[33] |
|
[34] |
|
[35] |
Wu N, Fu L, Su M, Aslam M, Wong K C, Dravid V P 2004 Nano Lett. 4 383 DOI: 10.1021/nl035139x
|
[36] |
Nor W F, Soh S K, Azmi A A, Yusof M S, Shamsuddin M 2017 Malaysian Journal of Analytical Sciences 2 768 DOI: 10.17576/mjas-2018-2205-04
|
[37] |
El-Hilo M, Chantrell R W, O’Grady Y K 1998 J. Appl. Phys. 5114 DOI: 10.1063/1.368761
|
[38] |
|
[39] |
|
[40] |
Nunes W C, Cebollada F, Knobel M, Zanchet D 2006 J. Appl. Phys. 99 08N705 DOI: 10.1063/1.2164418
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|