Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080505    DOI: 10.1088/1674-1056/ab9c03
Special Issue: SPECIAL TOPIC — Water at molecular level
SPECIAL TOPIC—Water at molecular level Prev   Next  

Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation

Ming-Zhe Shao(邵明哲)1, Yan-Ting Wang(王延颋)2, Xin Zhou(周昕)3
1 College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
2 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

It is very important to determine the phase transition temperature, such as the water/ice coexistence temperature in various water models, via molecular simulations. We show that a single individual direct simulation is sufficient to get the temperature with high accuracy and small computational cost based on the generalized canonical ensemble (GCE). Lennard-Jones fluids, the atomic water models, such as TIP4P/2005, TIP4P/ICE, and the mW water models are applied to illustrate the method. We start from the coexistent system of the two phases with a plane interface, then equilibrate the system under the GCE, which can stabilize the coexistence of the phases, to directly derive the phase transition temperature without sensitive dependence on the applied parameters of the GCE and the size of the simulation systems. The obtained result is in excellent agreement with that in literatures. These features make the GCE approach in determining the phase transition temperature of systems be robust, easy to use, and particularly good at working on computationally expensive systems.

Keywords:  phase transition      enhanced sampling      metastable state      molecular dynamics  
Received:  26 April 2020      Revised:  06 June 2020      Accepted manuscript online: 
PACS:  05.70.-a (Thermodynamics)  
  05.70.Fh (Phase transitions: general studies)  
  02.70.Ns (Molecular dynamics and particle methods)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574310, 11674345, and 21733010) and Beijing National Laboratory for Molecular Sciences, China (Grant No. BNLMS201835).

Corresponding Authors:  Xin Zhou     E-mail:

Cite this article: 

Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕) Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation 2020 Chin. Phys. B 29 080505

[1] Matsumoto M, Saito S and Ohmine I 2002 Nature 416 409
[2] Bai G, Gao D, Liu Z, Zhou X and Wang J 2019 Nature 576 437
[3] Russo J, Romano F and Tanaka H 2014 Nature Mater. 13 733
[4] Li T, Donadio D, Russo G and Galli G 2011 Phys. Chem. Chem. Phys. 13 19807
[5] Conde M M, Rovere M and Gallo P 2017 J. Chem. Phys. 147 244506
[6] Gao G T, Zeng X C and Tanaka H 2000 J. Chem. Phys. 112 8534
[7] Molinero V and Moore E B 2009 J. Phys. Chem. B 113 4008
[8] Moore E B and Molinero V 2011 Nature 479 506
[9] Sanz E, Vega C, Abascal J L F and MacDowell L G 2004 J. Chem. Phys. 121 1165
[10] Sanz E, Vega C, Abascal J L F and MacDowell L G 2004 Phys. Rev. Lett. 92 255701
[11] Smit B 1992 J. Chem. Phys. 96 8639
[12] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[13] Vega C and Abascal J L 2011 Phys. Chem. Chem. Phys. 13 19663
[14] Kroes G J 1992 Surf. Sci. 275 365
[15] Vega C, Sanz E and Abascal J L F 2005 J. Chem. Phys. 122 114507
[16] Ghoufi A, Goujon F, Lachet V and Malfreyt P 2008 J. Chem. Phys. 128 154716
[17] Vega C and de Miguel E 2007 J. Chem. Phys. 126 154707
[18] Alejandre J, Tildesley D J and Chapela G A 1995 J. Chem. Phys. 102 4574
[19] Ladd A J C and Woodcock L V 1977 Chem. Phys. Lett. 51 155
[20] Bryk T and Haymet A D J 2002 J. Chem. Phys. 117 10258
[21] Conde M M, Gonzalez M A, Abascal J L F and Vega C 2013 J. Chem. Phys. 139 154505
[22] Abascal J L F and Vega C 2005 J. Chem. Phys. 123 234505
[23] Xu S, Zhou X and Ou-Yang Z C 2012 Commun. Comput. Phys. 12 1293
[24] Jeong S, Jho Y and Zhou X 2015 Sci. Rep. 5 15955
[25] Zhao L, Xu S, Tu Y S and Zhou X 2017 Chin. Phys. B 26 060202
[26] Yin L, Xu S, Jeong S, Jho Y, Wang J and Zhou X 2017 Acta Phys. Sin. 66 136102(in Chinese)
[27] Xu S, Zhou X, Jiang Y and Wang Y T 2015 Sci. China Phys. Mech. 58 590501
[28] Zhang C B, Ye F F, Li M and Zhou X 2019 Sci. China-Phys. Mech. Astron. 62 67012
[29] Hoover W 1985 Phys. Rev. A 31 1695
[30] Abascal J L F, Sanz E, García Fernández R and Vega C 2005 J. Chem. Phys. 122 234511
[31] Broughton J Q and Gilmer G H 1986 J. Chem. Phys. 84 5741
[32] García Fernández R, Abascal J L and Vega C 2006 J. Chem. Phys. 124 144506
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[15] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
No Suggested Reading articles found!