Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 036401    DOI: 10.1088/1674-1056/ac1e19
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Solid-liquid transition induced by the anisotropic diffusion of colloidal particles

Fu-Jun Lin(蔺福军)1,2, Jing-Jing Liao(廖晶晶)2, Jian-Chun Wu(吴建春)1, and Bao-Quan Ai(艾保全)1,†
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;
2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract  We numerically study the phase behaviors of colloids with anisotropic diffusion in two dimensions. It is found that the diffusion anisotropy of colloidal particles plays an important role in the phase transitions. A strong diffusion anisotropy induces the large vibration of particles, subsequently, the system goes into a disordered state. In the presence of the strong-coupling, particles with weak diffusion anisotropy can freeze into hexagonal crystals. Thus, there exists a solid-liquid transition. With the degree of diffusion anisotropy increasing, the transition points are shifted to the stronger-coupled region. A competition between the degree of diffusion anisotropy and coupling strength widens the transition region where the heterogeneous structures coexist, which results in a broad-peak probability distribution curve for the local order parameter. Our study may be helpful for the experiments related to the phase behavior in statistical physics, materials science and biophysical systems.
Keywords:  phase transition      anisotropic diffusion      colloidal particles  
Received:  11 May 2021      Revised:  07 July 2021      Accepted manuscript online:  17 August 2021
PACS:  64.70.pv (Colloids)  
  05.70.-a (Thermodynamics)  
  47.51.+a (Mixing?)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 12075090, 11905086 and 12165015), the GDUPS (2016), and the Major Basic Research Project of Guangdong Province, China (Grant No. 2017KZDXM024), and the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 2021BAB201015 and GJJ200820), and Science and Technology Planning Project of Ganzhou City (Grant No. 202101095077), and High-level Scientific Research Foundation for the Introduction of Talents of Jiangxi University of Science and Technology.
Corresponding Authors:  Bao-Quan Ai     E-mail:  aibq@scnu.edu.cn

Cite this article: 

Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全) Solid-liquid transition induced by the anisotropic diffusion of colloidal particles 2022 Chin. Phys. B 31 036401

[1] Li D, Zhou H and Honma I 2004 Nat. Mater. 3 65
[2] Liu H, Kumar S K and Douglas J F 2009 Phys. Rev. Lett. 103 018101
[3] Lin H X, Lee S, Sun L, Spellings M, Engel M, Glotzer S C and Mirkin C A 2017 Science 355 931
[4] Zaccarelli E, Valeriani C, Sanz E, Poon W C K, Cates M E and Pusey P N 2009 Phys. Rev. Lett. 103 135704
[5] Sanz E, Valeriani C, Zaccarelli E, Poon W C K, Pusey P N and Cates M E 2011 Phys. Rev. Lett. 106 215701
[6] Ni R, Cohen Stuart M A, Dijkstra M and Bolhuis P G 2014 Soft Matter 10 6609
[7] Briand G and Dauchot O 2016 Phys. Rev. Lett. 117 098004
[8] Nie P, Chattoraj J, Piscitelli A, Doyle P and Ciamarra M P 2020 Phys. Rev. Res. 2 023010
[9] Auer S and Frenkel D 2002 J. Phys.:Condens. Matter 14 7667
[10] Reinke D, Stark H, von Grünberg H H, Schofield A B, Maret G and Gasser U 2007 Phys. Rev. Lett. 98 038301
[11] Smallenburg F, Boon N, Kater M, Dijkstra M and van Roij R 2011 J. Chem. Phys. 134 074505
[12] Anderson V J and Lekkerkerker H N W 2002 Nature 416 811
[13] Poon W C K 2002 J. Phys.:Condens. Matter 14 R859
[14] Frenkel D 2002 Science 296 65
[15] Kose A, Ozaki M, Takano K, Kobayashi Y and Hachisu S 1973 J. Colloid Interface Sci. 44 330
[16] Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298
[17] Yin Q Q, Li Y Y, Marchesoni F, Debnath D and Ghosh P K 2021 Chin. Phys. Lett. 38 040501
[18] Bialké J, Speck T and Löwen H 2012 Phys. Rev. Lett. 108 168301
[19] Lei L, Wang S, Zhang X, Lai W J, Wu J Y and Gao Y X 2020 Chin. Phys. B 30 056112
[20] Allahyarov E, Sandomirski K, Egelhaaf S U and Löwen H 2015 Nat. Commun. 6 7110
[21] Li B, Zhou D and Han Y 2016 Nat. Rev. Mater. 1 15011
[22] Singh D P, Choudhury U, Fischer P and Mark A G 2017 Adv. Mater. 29 1701328
[23] Briand G, Schindler M and Dauchot O 2018 Phys. Rev. Lett. 120 208001
[24] Valeriani C, Sanz E, Zaccarelli E, Poon W C K, Cates M E and Pusey P N 2011 J. Phys. Condens. Matter 23 194117
[25] Schofield A B, Pusey P N and Radcliffe P 2005 Phys. Rev. E 72 031407
[26] Schaertl N, Botin D, Palberg T and Bartsch E 2018 Soft Matter 14 5130
[27] Velasco E, Navascués G and Mederos L 1999 Phys. Rev. E 60 3158
[28] Hynninen A P, Filion L and Dijkstra M 2009 J. Chem. Phys. 131 064902
[29] Dijkstra M 2014 Adv. Chem. Phys. 156 35
[30] Ai B Q and Wu J C 2014 J. Chem. Phys. 140 094103
[31] Liao J J, Zhu W J and Ai B Q 2018 Phys. Rev. E 97 062151
[32] Jin W, Chan H K and Zhong Z 2020 Phys. Rev. Lett. 124 248002
[33] Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C and Yodh A G 2006 Science 314 626
[34] Han Y, Alsayed A, Nobili M and Yodh A G 2009 Phys. Rev. E 80 011403
[35] Kawamura H 1981 Prog. Theor. Phys. 66 772
[36] Halperin B I and Nelson D R 1978 Phys. Rev. Lett. 41 121
[37] Schweigert I V, Schweigert V A and Peeters F M 1999 Phys. Rev. Lett. 82 5293
[38] Löwen H 1996 Phys. Rev. E 53 R29
[39] Hartmann P, Kalman G J, Donko Z and Kutasi K 2005 Phys. Rev. E 72 026409
[40] Lechner W and Dellago C 2008 J. Chem. Phys. 129 114707
[41] Zahn K and Maret G 2000 Phys. Rev. Lett. 85 3656
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!