Special Issue:
SPECIAL TOPIC — Quantum computing and quantum sensing
|
SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Vector magnetometry in zero bias magnetic field using nitrogen-vacancy ensembles |
Chunxing Li(李春兴)1,2, Fa-Zhan Shi(石发展)1,2,3, Jingwei Zhou(周经纬)1,2,3, and Peng-Fei Wang(王鹏飞)1,2,3,† |
1 CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
Abstract The application of the vector magnetometry based on nitrogen-vacancy (NV) ensembles has been widely investigated in multiple areas. It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatial resolution. However, a bias magnetic field is necessary to fully separate the resonance lines of optically detected magnetic resonance (ODMR) spectrum of NV ensembles. This brings disturbances in samples being detected and limits the range of application. Here, we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles. By utilizing the anisotropy property of fluorescence excited from NV centers, we analyzed the ODMR spectrum of NV ensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical model and reconstructed the magnetic field vector. The minimum magnetic field modulus that can be resolved accurately is down to $\sim 0.64 $ G theoretically depending on the ODMR spectral line width (1.8 MHz), and $\sim 2 $ G experimentally due to noises in fluorescence signals and errors in calibration. By using $^{13}$C purified and low nitrogen concentration diamond combined with improving calibration of unknown parameters, the ODMR spectral line width can be further decreased below 0.5 MHz, corresponding to $\sim 0.18 $ G minimum resolvable magnetic field modulus.
|
Received: 30 April 2024
Revised: 25 August 2024
Accepted manuscript online: 27 August 2024
|
PACS:
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
07.57.Pt
|
(Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)
|
|
76.70.Hb
|
(Optically detected magnetic resonance (ODMR))
|
|
76.30.Mi
|
(Color centers and other defects)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFB3202800 and 2023YF0718400), Chinese Academy of Sciences (Grant No. ZDZBGCH2021002), Chinese Academy of Sciences (Grant No. GJJSTD20200001), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303204), Anhui Initiative in Quantum Information Technologies, USTC Tang Scholar, and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Peng-Fei Wang
E-mail: wpf@ustc.edu.cn
|
Cite this article:
Chunxing Li(李春兴), Fa-Zhan Shi(石发展), Jingwei Zhou(周经纬), and Peng-Fei Wang(王鹏飞) Vector magnetometry in zero bias magnetic field using nitrogen-vacancy ensembles 2024 Chin. Phys. B 33 100701
|
[1] Goldman M L, Sipahigil A, Doherty M W, Yao N Y, Bennett S D, Markham M, Twitchen D J, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. Lett. 114 145502 [2] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383 [3] Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S and Walsworth R L 2018 Phys. Rev. X 8 031025 [4] Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappellaro P, Hemmer P R, Yacoby A, Lukin M D and Walsworth R L 2010 Phys. Rev. B 82 201201 [5] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E and Awschalom D D 2010 Appl. Phys. Lett. 96 092504 [6] Steinert S, Dolde F, Neumann P, Aird A, Naydenov B, Balasubramanian G, Jelezko F and Wrachtrup J 2010 Rev. Sci. Instrum. 81 043705 [7] Wang P, Yuan Z, Huang P, Rong X, Wang M, Xu X, Duan C, Ju C, Shi F and Du J 2015 Nat. Commun. 6 6631 [8] Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nat. Phys. 7 459 [9] Cheng Z, Ye X Y, Wu J D, Yu P, Wang C J, Wang M Q, Duan C K, Wang Y, Shi F Z, Tian C L, Chen H W, Wang P F and Du J F 2023 Phys. Rev. Applied 19 014057 [10] Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J and Wrachtrup J 2013 Nano Lett. 13 2738 [11] Foy C, Zhang L, Trusheim M E, Bagnall K R, Walsh M, Wang E N and Englund D R 2020 ACS Applied Materials & Interfaces 12 26525 [12] Kehayias P, Turner M J, Trubko R, Schloss J M, Hart C A, Wesson M, Glenn D R and Walsworth R L 2019 Phys. Rev. B 100 174103 [13] Broadway D A, Johnson B C, Barson M S J, Lillie S E, Dontschuk N, McCloskey D J, Tsai A, Teraji T, Simpson D A, Stacey A, McCallum J C, Bradby J E, Doherty M W, Hollenberg L C L and Tetienne J P 2019 Nano Lett. 19 4543 [14] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Buttner F, Walsworth R L, Beach G S D and Yacoby A 2018 Nat. Commun. 9 2712 [15] van der Sar T, Casola F, Walsworth R and Yacoby A 2015 Nat. Commun. 6 7886 [16] Fu R R, Weiss B P, Lima E A, Kehayias P, Araujo J F D F, Glenn D R, Gelb J, Einsle J F, Bauer A M, Harrison R J, Ali G A H and Walsworth R L 2017 Earth and Planetary Science Letters 458 1 [17] Glenn D R, Fu R R, Kehayias P, Le Sage D, Lima E A, Weiss B P and Walsworth R L 2017 Geochemistry, Geophysics, Geosystems 18 3254 [18] Turner M J, Langellier N, Bainbridge R, Walters D, Meesala S, Babinec T M, Kehayias P, Yacoby A, Hu E, Lončar M, Walsworth R L and Levine E V 2020 Phys. Rev. Applied 14 014097 [19] Fleig T, Frontera P and Ieee 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), 2018 Apr 23-26, Monterey, CA, pp. 1107-1112 [20] Dunlop D J and Özdemir Ö 1997 Rock Magnetism: Fundamentals and Frontiers (Cambridge: Cambridge University Press) [21] Lenz T, Wickenbrock A, Jelezko F, Balasubramanian G and Budker D 2021 Quantum Science and Technology 6 034006 [22] Zheng H, Xu J, Iwata G Z, Lenz T, Michl J, Yavkin B, Nakamura K, Sumiya H, Ohshima T, Isoya J, Wrachtrup J, Wickenbrock A and Budker D 2019 Phys. Rev. Applied 11 064068 [23] Münzhuber F, Bayer F, Marković V, Brehm J, Kleinlein J, Molenkamp L W and Kiessling T 2020 Phys. Rev. Applied 14 014055 [24] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004 [25] Alegre T P M, Santori C, Medeiros-Ribeiro G and Beausoleil R G 2007 Phys. Rev. B 76 165205 [26] Lagarias J C, Reeds J A, Wright M H and Wright P E 1998 SIAM Journal on Optimization 9 112 [27] Reuschel P, Agio M and Flatae A M 2022 Advanced Quantum Technologies 5 2200077 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|