Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060504    DOI: 10.1088/1674-1056/ad39c8
GENERAL Prev   Next  

Two innovative equivalent statements of the third law of thermodynamics

Xiaohang Chen(陈晓航)†, Yinghui Zhou(周颖慧)†, and Jincan Chen(陈金灿)|‡
Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  It is found from textbooks and literature that there are three different statements for the third law of thermodynamics, i.e., the Nernst theorem, the unattainability statement of absolute zero temperature, and the heat capacity statement. It is pointed out that such three statements correspond to three thermodynamic parameters, which are, respectively, the entropy, temperature, and heat capacity, and can be obtained by extrapolating the experimental results of different parameters at ultra-low temperatures to absolute zero. It is expounded that because there is no need for additional assumptions in the derivation of the Nernst equation, the Nernst theorem should be renamed as the Nernst statement. Moreover, it is proved that both the Nernst statement and the heat capacity statement are mutually deducible and equivalent, while the unattainability of absolute zero temperature is only a corollary of the Nernst statement or the heat capacity statement so that it is unsuitably referred to as one statement of the third law of thermodynamics. The conclusion is that the Nernst statement and the heat capacity statement are two equivalent statements of the third law of thermodynamics.
Keywords:  Nernst statement      heat capacity statement      Nernst theorem      absolute zero temperature      the third law of thermodynamics  
Received:  07 January 2024      Revised:  19 March 2024      Accepted manuscript online:  03 April 2024
PACS:  05.70.-a (Thermodynamics)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075197) and the Fundamental Research Fund for the Central Universities of China (Grant No. 20720210020).
Corresponding Authors:  Jincan Chen     E-mail:  jcchen@xmu.edu.cn

Cite this article: 

Xiaohang Chen(陈晓航), Yinghui Zhou(周颖慧), and Jincan Chen(陈金灿)| Two innovative equivalent statements of the third law of thermodynamics 2024 Chin. Phys. B 33 060504

[1] Zemansky M W and Dittman R H 1977 Heat and Thermodynamics 7th edn. (New York: McGraw-Hill)
[2] Hsien J S 1975 Principles of Thermodynamics (New York: McGrawHill)
[3] Saggion A, Faraldo R and Pierno M 2019 Thermodynamics, Fundamental Principles and Applications (Cham: Springer)
[4] Wang Z C 2013 Thermodynamics and Statistical Physics 5th edn. (Beijing: Higher Education Press)
[5] Callen H B 1985 Thermodynamics and an Introduction to Thermostatistics 2nd edn. (New York: Wiley)
[6] Guggenheim E A 1967 Thermodynamics, An Advanced Treatment for Chemists and Physicists 5th edn. (Amsterdam: North-Holland)
[7] Wang Z 1955 Thermodynamics (Beijing: Higher Education Press)
[8] Hatsopoulos G N and Keenan J H 1965 Principles of General Thermodynamics (New York: John Wiley & Sons)
[9] Hasse R 1971 Physical Chemistry: An Advanced Treatise (New York: Academic Press)
[10] Levine I N 1983 Physical Chemistry 2nd edn. (New York: McGrawHill)
[11] Landsberg P T 1978 Thermodynamics and Statistical Mechanics (Oxford: Oxford University Press)
[12] Landsberg P T 1957 Rev. Mod. Phys. 28 363
[13] Wheeler J C 1991 Phys. Rev. A 43 5289
[14] Wheeler J C 1992 Phys. Rev. A 45 2637
[15] Blau S and Halfpap B 1996 Am. J. Phys. 64 13
[16] Landsberg P T 1997 Am. J. Phys. 65 269
[17] Belgiorno F 2003 J. Phys. A 36 8165
[18] Belgiorno F 1992 J. Phys. A 36 8195
[19] McNabb III J R, Fujita S and Suzuki A 2017 J. Mod. Phys. 8 839
[20] Masanes L and Oppenheim J 2017 Nat. Commun. 8 14538
[21] Kestin J 1979 A Course in Thermodynamics Vol. 2 (New York: Hemisphere)
[22] Beattie J A and Oppenheim I 1979 Principles of thermodynamics (Amsterdam: Elsevier)
[23] Yan Z and Chen J 1988 J. Phys. A 21 L707
[24] Yan Z, Chen J and Andresen B 2001 Europhys. Lett. 55 623
[25] Landsberg P T 1989 J. Phys. A 22 139
[26] Oppenheim I 1989 J. Phys. A 22 143
[27] Gujrati P D 1990 Phys. Lett. A 151 375
[28] Su S, Zhou Y, Su G and Chen J 2023 Mod. Phys. Lett. B 37 2250214
[29] Su S and Chen J 2023 Mod. Phys. Lett. A 37 2250246
[30] Su S, Xia S, Liang T and Chen J 2024 Mod. Phys. Lett. B 38 2450115
[31] Ramsey N F 1956 Phys. Rev. 103 20
[32] Chen J and Su G 2010 Thermodynamics and Statistical Physics (Beijing: Science Press)
[33] Medley P, Weld D M, Miyake H, Pritchard D E and Ketterle W 2011 Phys. Rev. Lett. 106 195301
[34] Müntinga H, Ahlers H, Krutzik M, et al. 2013 Phys. Rev. Lett. 110 093602
[35] Kalnins J G, Amini J M and Gould H 2005 Phys. Rev. A 72 043406
[36] Kovachy T, Hogan J M, Sugarbaker A, Dickerson S M, Donnelly C A, Overstreet C and Kasevich M A 2015 Phys. Rev. Lett. 114 143004
[37] Lin Z 2007 Thermodynamics and Statistical Physics (Beijing: Peking University Press)
[38] Mattis D C 2003 Statistical Mechanics Made Simple (Singapore: World Scientific Publishing Co.)
[39] Su S, Wang J, Chen X and Chen J 2024 Mod. Phys. Lett. B 38 2350255
[40] Kestin J and Dorfman J R 1971 A Course in Statistical Thermodynamics (New York: Academic Press)
[41] Andrews F C 1971 Thermodynamics: Principles and Applications (New York: Wiley-Interscience)
[42] Kubo R 1968 Thermodynamics: An Advanced Course with Problems and Solutions (Amsterdam: North-Holland)
[43] McNabb III J R, Fujita S and Suzuki A 2017 J. Mod. Phys. 8 839
[44] Kieu T D 2019 Phys. Lett. A 383 125848
[45] Sears F W and Salinger G L 1977 Thermodynamics, Kinetic Theory, and Statistical Thermodynamics 3rd edn. (Bostom: Addison-Wesley)
[1] Simulation of optimal work extraction for quantum systems with work storage
Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2024, 33(2): 020312.
[2] Optimal driving field for multipartite quantum battery coupled with a common thermal bath
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光). Chin. Phys. B, 2023, 32(11): 110301.
[3] Quantum Stirling heat engine with squeezed thermal reservoir
Nikolaos Papadatos. Chin. Phys. B, 2023, 32(10): 100702.
[4] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[5] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽) and Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[6] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[7] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[10] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[11] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[12] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[13] Effect of transversal concentration gradient on H2-O2 cellular detonation
Cheng Wang(王成), Yi-Xuan Wu(吴易烜), Jin Huang(黄金), Wen-Hu Han(韩文虎), Qing-Guan Song(宋清官). Chin. Phys. B, 2020, 29(6): 060503.
[14] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[15] Controllable laning phase for oppositely driven disk systems
Lin Liu(刘琳), Ke Li(李珂), Xiao-Lin Zhou(周晓琳), Lin-Li He(何林李), Lin-Xi Zhang(章林溪). Chin. Phys. B, 2019, 28(12): 120501.
No Suggested Reading articles found!