CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn |
Bo-Wen Chen(陈博文)1,2 and Bing Shen(沈冰)1,2,† |
1 Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties. Here we report the systematic magneto-transport studies on the Heusler alloy Nb$_{x}$Zr$_{1-x}$Co$_2$Sn considered as a ferromagnetic (FM) Weyl semimetal. The cusp anomaly of temperature-dependent resistivity and large isotropic negative magneto-resistivity (MR) emerge around the FM transition consistent with the theoretical half-metallic predictions. The prominent anomalous Hall effect (AHE) has the same behavior with the applied field along various crystal directions. The Nb doping introduces more disorder resulting in the enhancement of the upturn for the temperature-dependent resistivity in low temperatures. With Nb doping, the AHE exhibits systemic evolution with the Fermi level lifted. At the doping level of $x=0.25$, the AHE mainly originates from the intrinsic contribution related to non-trivial topological Weyl states.
|
Received: 10 March 2024
Revised: 22 April 2024
Accepted manuscript online:
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFF0718400 and 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. U2130101 and 92165204), the Natural Science Foundation of Guangdong Province, China (Grant No. 2022A1515010035), the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), and the Open Project of Key Laboratory of Optoelectronic Materials and Technologies (Grant No. OEMT-2023-ZTS-01). |
Corresponding Authors:
Bing Shen
E-mail: Shenbing@mail.sysu.edu.cn
|
Cite this article:
Bo-Wen Chen(陈博文) and Bing Shen(沈冰) Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn 2024 Chin. Phys. B 33 087501
|
[1] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41 [2] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 [3] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416 [4] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [6] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163 [7] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [9] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [10] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [11] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681 [12] Yang H, You W, Wang J, Huang J, Xi C, Xu X, Cao C, Tian M, Xu Z A, Dai J and Li Y 2020 Phys. Rev. Mater. 4 024202 [13] Gao L, Shen S, Wang Q, Shi W, Zhao Y, Li C, Cao W, Pei C, Ge J Y, Li G, Li J, Chen Y, Yan S and Qi Y 2021 Appl. Phys. Lett. 119 092405 [14] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Zahid Hasan M 2020 Nature 583 533 [15] Burkov A A 2014 Phys. Rev. Lett. 113 187202 [16] Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401 [17] Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119 [18] Li P, Koo J, Ning W, Li J, Miao L, Min L, Zhu Y, Wang Y, Alem N, Liu C X, Mao Z and Yan B 2020 Nat. Commun. 11 3476 [19] Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P and Nakatsuji S 2018 Nat. Phys. 14 1119 [20] Sklyadneva I, Heid R, Echenique P M and Chulkov E V 2021 Phys. Rev. B 103 024303 [21] Matthiessen A and Vogt C 1864 Ann. Phys. 198 19 [22] Barth J, Fecher G H, Balke B, Ouardi S, Graf T, Felser C, Shkabko A, Weidenkaff A, Klaer P, Elmers H J, Yoshikawa H, Ueda S and Kobayashi K 2010 Phys. Rev. B 81 064404 [23] Kataoka M 2001 Phys. Rev. B 63 134435 [24] Kamble R B, Tanty N, Patra A and Prasad V 2016 Appl. Phys. Lett. 109 083102 [25] Arrott A 1957 Phys. Rev. 108 1394 [26] Yang M, Gu G, Yi C, Yan D, Li Y and Shi Y 2019 J. Phys.: Condens. Matter 31 275702 [27] Friedemann S, Brando M, Duncan W J, Neubauer A, Pfleiderer C and Grosche F M 2013 Phys. Rev. B 87 024410 [28] Checkelsky J G, Lee M, Morosan E, Cava R J and Ong N P 2008 Phys. Rev. B 77 014433 [29] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [30] Zeng C, Yao Y, Niu Q and Weitering H H 2006 Phys. Rev. Lett. 96 037204 [31] Huang Y Q, Zheng P Y, Liu R, Xu X T, Wu Z Y, Dong C, Wang J F, Yin Z P and Jia S 2023 Chin. Phys. B 32 107502 [32] Shukla G K, Sau J, Shahi N, Singh A K, Kumar M and Singh S 2021 Phys. Rev. B 104 195108 [33] Liu Y, Tan H, Hu Z, Yan B and Petrovic C 2021 Phys. Rev. B 103 045106 [34] Wang Q, Sun S, Zhang X, Pang F and Lei H 2016 Phys. Rev. B 94 075135 [35] Haldane F D M 2004 Phys. Rev. Lett. 93 206602 [36] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kbler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870 [37] Onoda S, Sugimoto N and Nagaosa N 2006 Phys. Rev. Lett. 97 126602 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|