CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes |
Tijjani Abdulrazak1,2,‡, Xuejuan Liu(刘雪娟)1,3, Zhejunyu Jin(金哲珺雨)1, Yunshan Cao(曹云姗)1, and Peng Yan(严鹏)1,† |
1 School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 Department of Physics, Bayero University, Kano-700006, Nigeria; 3 School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China |
|
|
Abstract Within the magnonics community, there has been a lot of interests in the magnon-skyrmion interaction. Magnons and skyrmions are two intriguing phenomena in condensed matter physics, and magnetic nanotubes have emerged as a suitable platform to study their complex interactions. We show that magnon frequency combs can be induced in magnetic nanotubes by three-wave mixing between the propagating magnons and skyrmion. This study enriches our fundamental comprehension of magnon-skyrmion interactions and holds promise for developing innovative spintronic devices and applications. This frequency comb tunability and unique spectral features offer a rich platform for exploring novel avenues in magnetic nanotechnology.
|
Received: 05 February 2024
Revised: 09 May 2024
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
71.35.Ji
|
(Excitons in magnetic fields; magnetoexcitons)
|
|
12.39.Dc
|
(Skyrmions)
|
|
75.30.Ds
|
(Spin waves)
|
|
Fund: This project was supported by the National Key R&D Program China (Grant No. 2022YFA1402802) and the National Natural Science Foundation of China (Grant Nos. 12374103 and 12074057). |
Corresponding Authors:
Peng Yan, Tijjani Abdulrazak
E-mail: yan@uestc.edu.cn;atijjani.phy@buk.edu.ng
|
Cite this article:
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏) Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes 2024 Chin. Phys. B 33 087503
|
[1] Bellini M and Hänsch T W 2000 Opt. Lett. 14 1049 [2] Fortier T and Baumann E 2019 Commun. Phys. 2 153 [3] Jones D J, Diddams S A, Taubman M S, Cundiff S T, Ma L S and Hall J L 2000 Opt. Lett. 5 308 [4] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [5] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233 [6] Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214 [7] Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M and Morandotti R 2018 Phys. Rep. 729 81 [8] Suh M G, Yi X, Lai Y H, Leifer S, Grudinin I S, Vasisht G, Martin E C, Fitzgerald M P, Doppmann G and Wang J 2019 Nat. Photon. 13 25 [9] Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, Gaeta A L and Lipson M 2018 Sci. Adv. 4 1701858 [10] Ganesan A, Do C and Seshia A 2017 Phys. Rev. Lett. 118 033903 [11] Cao L S, Qi D X, Peng R W, Wang M and Schmelcher P 2014 Phys. Rev. Lett. 112 075505 [12] Nikuni T, Oshikawa M, Oosawa A and Tanaka H 2000 Phys. Rev. Lett. 84 5868 [13] Zhao J, Bragas A V, Lockwood D J and Merlin R 2004 Phys. Rev. Lett. 93 107203 [14] Bender S A, Duine R A and Tserkovnyak Y 2012 Phys. Rev. Lett. 108 246601 [15] Flebus B, Bender S A, Tserkovnyak Y and Duine R A 2016 Phys. Rev. Lett. 116 117201 [16] Kamra A, Thingstad E, Rastelli G, Duine R A, Brataas A, Belzig W and Sudbø A 2019 Phys. Rev. B 100 174407 [17] Liu Z X, Xiong H and Wu Y 2019 Phys. Rev. B 100 134421 [18] Yuan H Y and Duine R A 2020 Phys. Rev. B 102 100402 [19] Wolz T, Stehli A, Schneider A, Boventer I, Macêdo R, Ustinov A V, Kläui M and Weides M 2020 Commun. Phys. 3 3 [20] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425 [21] Yuan H Y, Zheng S, Ficek Z, He Q Y and Yung M H 2020 Phys. Rev. B 101 014419 [22] Wang W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortés-Ortuño D Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203 [23] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge F B V 2014 AIP Adv. 4 107133 [24] Liang X, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Qiu L, Zhao G P and Zhou Y 2021 Appl. Phys. Lett. 119 062403 [25] Huang C, Liu B, Jiang L, Pan Y, Fan J, Shi D, Ma C, Luo Q and Zhu Y 2023 Phys. Rev. B 108 094433 [26] Zhu Y, Pan Y F, Ge L, Fan J Y, Shi D N, Ma C L, Hu J and Wu R Q 2023 Phys. Rev. B 108 041401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|