Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087503    DOI: 10.1088/1674-1056/ad4ff5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes

Tijjani Abdulrazak1,2,‡, Xuejuan Liu(刘雪娟)1,3, Zhejunyu Jin(金哲珺雨)1, Yunshan Cao(曹云姗)1, and Peng Yan(严鹏)1,†
1 School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Department of Physics, Bayero University, Kano-700006, Nigeria;
3 School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
Abstract  Within the magnonics community, there has been a lot of interests in the magnon-skyrmion interaction. Magnons and skyrmions are two intriguing phenomena in condensed matter physics, and magnetic nanotubes have emerged as a suitable platform to study their complex interactions. We show that magnon frequency combs can be induced in magnetic nanotubes by three-wave mixing between the propagating magnons and skyrmion. This study enriches our fundamental comprehension of magnon-skyrmion interactions and holds promise for developing innovative spintronic devices and applications. This frequency comb tunability and unique spectral features offer a rich platform for exploring novel avenues in magnetic nanotechnology.
Keywords:  ferromagnetic      magnetic field      magnon      Mumax3 software      skyrmion  
Received:  05 February 2024      Revised:  09 May 2024      Accepted manuscript online:  24 May 2024
PACS:  75.50.Gg (Ferrimagnetics)  
  71.35.Ji (Excitons in magnetic fields; magnetoexcitons)  
  12.39.Dc (Skyrmions)  
  75.30.Ds (Spin waves)  
Fund: This project was supported by the National Key R&D Program China (Grant No. 2022YFA1402802) and the National Natural Science Foundation of China (Grant Nos. 12374103 and 12074057).
Corresponding Authors:  Peng Yan, Tijjani Abdulrazak     E-mail:  yan@uestc.edu.cn;atijjani.phy@buk.edu.ng

Cite this article: 

Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏) Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes 2024 Chin. Phys. B 33 087503

[1] Bellini M and Hänsch T W 2000 Opt. Lett. 14 1049
[2] Fortier T and Baumann E 2019 Commun. Phys. 2 153
[3] Jones D J, Diddams S A, Taubman M S, Cundiff S T, Ma L S and Hall J L 2000 Opt. Lett. 5 308
[4] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[5] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233
[6] Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[7] Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M and Morandotti R 2018 Phys. Rep. 729 81
[8] Suh M G, Yi X, Lai Y H, Leifer S, Grudinin I S, Vasisht G, Martin E C, Fitzgerald M P, Doppmann G and Wang J 2019 Nat. Photon. 13 25
[9] Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, Gaeta A L and Lipson M 2018 Sci. Adv. 4 1701858
[10] Ganesan A, Do C and Seshia A 2017 Phys. Rev. Lett. 118 033903
[11] Cao L S, Qi D X, Peng R W, Wang M and Schmelcher P 2014 Phys. Rev. Lett. 112 075505
[12] Nikuni T, Oshikawa M, Oosawa A and Tanaka H 2000 Phys. Rev. Lett. 84 5868
[13] Zhao J, Bragas A V, Lockwood D J and Merlin R 2004 Phys. Rev. Lett. 93 107203
[14] Bender S A, Duine R A and Tserkovnyak Y 2012 Phys. Rev. Lett. 108 246601
[15] Flebus B, Bender S A, Tserkovnyak Y and Duine R A 2016 Phys. Rev. Lett. 116 117201
[16] Kamra A, Thingstad E, Rastelli G, Duine R A, Brataas A, Belzig W and Sudbø A 2019 Phys. Rev. B 100 174407
[17] Liu Z X, Xiong H and Wu Y 2019 Phys. Rev. B 100 134421
[18] Yuan H Y and Duine R A 2020 Phys. Rev. B 102 100402
[19] Wolz T, Stehli A, Schneider A, Boventer I, Macêdo R, Ustinov A V, Kläui M and Weides M 2020 Commun. Phys. 3 3
[20] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425
[21] Yuan H Y, Zheng S, Ficek Z, He Q Y and Yung M H 2020 Phys. Rev. B 101 014419
[22] Wang W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortés-Ortuño D Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203
[23] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge F B V 2014 AIP Adv. 4 107133
[24] Liang X, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Qiu L, Zhao G P and Zhou Y 2021 Appl. Phys. Lett. 119 062403
[25] Huang C, Liu B, Jiang L, Pan Y, Fan J, Shi D, Ma C, Luo Q and Zhu Y 2023 Phys. Rev. B 108 094433
[26] Zhu Y, Pan Y F, Ge L, Fan J Y, Shi D N, Ma C L, Hu J and Wu R Q 2023 Phys. Rev. B 108 041401
[1] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[2] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[3] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[4] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[5] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[6] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[7] Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
Ming-Xing Wu(吴明兴), Kai Xie(谢楷), Yan Liu(刘艳), Han Xu(徐晗), Bao Zhang(张宝), and De-Yang Tian(田得阳). Chin. Phys. B, 2024, 33(5): 055204.
[8] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[9] Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter
Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇). Chin. Phys. B, 2024, 33(4): 045206.
[10] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[11] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[12] Interfacial DMI in Fe/Pt thin films grown on different buffer layers
Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵). Chin. Phys. B, 2024, 33(4): 048501.
[13] High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe
Xu-Tong Zhao(赵旭彤), Fei-Yue He(何飞越), Ya-Wen Xue(薛雅文), Wen-Hao Ma(马文豪), Xiao-Han Yin(殷筱晗), Sheng-Kai Xia(夏圣开), Ming-Jing Zeng(曾明菁), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(4): 048502.
[14] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[15] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .