Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057502    DOI: 10.1088/1674-1056/ac8923
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Bending sensor based on flexible spin valve

L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov
M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, S. Kovalevskoi Street 18, Ekaterinburg 620990, Russia
Abstract  Flexible spin valves were prepared by magnetron sputtering on polyimide substrates. The buffer layer that reduces significantly the effect of the polymer substrate on the spin valve microstructure and magnetoresistive properties was revealed. Bending deformation was applied to the microobjects based on the flexible spin valves in parallel to anisotropy axes. It was revealed that during the bend the magnetoresistance changes due to the joint impact of both the change of the magnetic field projection on the film plane and the change of the magnetic properties of the ferromagnetic layers. The obtained dependences have been used in construction of bending sensor, in which the flexible spin valve microstripes were united into the Wheatstone bridge.
Keywords:  spin valve      polymer substrate      magnetostriction      magnetic anisotropy  
Received:  07 June 2022      Revised:  01 August 2022      Accepted manuscript online:  12 August 2022
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  68.55.J- (Morphology of films)  
  68.65.Ac (Multilayers)  
  73.43.Qt (Magnetoresistance)  
Fund: This study was performed within the framework of State Assignment from the Ministry of Education and Science of Russian Federation (topic Spin, No. 122021000036-3 and topic Magnet, No. 122021000034-9) and partially supported by the Russian Foundation for Basic Research (project No. 20-42-660018).
Corresponding Authors:  L I Naumova     E-mail:  naumova@imp.uran.ru

Cite this article: 

L I Naumova, R S Zavornitsyn, M A Milyaev, N G Bebenin, A Y Pavlova, M V Makarova, I K Maksimova, V V Proglyado, A A Zakharov, and V V Ustinov Bending sensor based on flexible spin valve 2023 Chin. Phys. B 32 057502

[1] Gaspar J, Fonseca H, Paz E, Martins M, Valadeiro J, Cardoso S, Ferreira R and Freitas P P 2017 IEEE Trans. Magn. 53 1
[2] Wang Z, Wang X, Li M, Gao Y, Hu Z, Nan T, Liang X, Chen H, Yang J, Cash S and Sun N X 2016 Adv. Mater. 28 9370
[3] Makarov D, Melzer M, Karnaushenko D and Schmid O 2016 Appl. Phys. Rev. 3 011101
[4] Sheng P, Wang B and Li R 2018 J. Semiconduct. 39 011006
[5] Cardoso S, Leitao D C, Dias T M, Valadeiro J, Silva M D, Chicharo A, Silverio V, Gaspar J and Freitas P P 2017 J. Phys. D 50 213001
[6] Delipinar T, Shafique A, Sepehri Gohar M and Kaya Yapic M 2021 ACS Omega 6 8744
[7] Rogers J A, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju V R, Kuck V, Katz H, Amundson K, Ewing J and Drzaic 2001 Proc. Natl. Acad. Sci. USA 98 4835
[8] Zhou L, Wang A, Wu S C, Sun J, Park S and Jackson T 2006 Appl. Phys. Lett. 88 083502
[9] Kools J 1996 IEEE Trans. Magn. 32 3165
[10] Melzer M, Lin G, Makarov D and Schmidt O G 2012 Adv. Mater. 24 6468
[11] Bermúdez G, Karnaushenko D D, Karnaushenko D, Lebanov A, Bischoff L, Kaltenbrunner M, Fassbender J, Schmidt O G and Makarov D 2018 Science Advances 4 2623
[12] Ota S, Ando A and Chiba D 2018 Nat. Electron. 1 124
[13] Cullity B and Graham C D 2008 Introduction to Magnetic Materials, Second Edition (IEEE Press) p. 258 ISBN 978-0-471-47741-9
[14] Matsumoto H, Ota S, Ando A and Chiba D 2019 Appl. Phys. Lett. 114 132401
[15] Kwon J H, Kwak W Y and Ki Cho B 2018 Sci. Rep. 8 15765
[16] Kwon J H, Kwak W Y, Choi H Y, Kim G H and Cho B K 2015 J. Appl. Phys. 117 17
[17] Guo Q, Xu X G, Zhang Q Q, Liu Q, Wu Y J, Zhou Z Q, Zhu W M, Wu Y, Miaoa J and Jiang Y 2016 RSC Advances 6 88090
[18] Makushko P, Mata E, Bermúdez G, Hassan M, Laureti S, Rinaldi C, Fagiani F, Barucca G, Schmidt N, Zabila Y, Kosub T, Illing R, Volkov O, Vladymyrskyi I, Fassbender J, Albrecht M, Varvaro G and Makarov 2021 Adv. Funct. Mater. 31 2101089
[19] Kurlyandskaya G V, Fernández E, Svalov A, Burgoa Beitia A, García-Arribas A and Larra naga A 2016 J. Magnet. Magnet. Mater. 415 91-96
[20] Ferreira M, Mouro J, Silva M, Silva A, Cardoso S and Leitao D 2021 J. Magnet. Magnet. Mater. 538 168153
[21] Zhang Y, Zhang M, Li D, Zuo T, Zhou K, Gao M C, Sun B and Shen T 2019 Metals 9 382
[22] Meguro K, Hirano S, Jimbo M, Tsunashima S and Uchiyama S 1995 J. Magnet. Magnet. Mater. 140-144 601-602
[23] Naumova L I, Chernyshova T A, Zavornitsyn R S, Milyaev M A, Maksimova I K, Proglyado V V, Zakharov A A and Ustinov V V 2021 Phys. Metals Metallography 122 1066
[24] Dai G, Zhan O, Liu Y, Yang H, Zhang X, Chen B, and Li R W 2012 Appl. Phys. Lett. 100 122407
[25] Kamiguchi Y, Saito K, Iwasaki H, Sahash M, Ouse M and Nakamura S 1996 J. Appl. Phys. 79 6399
[26] Zhang H, Li Y Y, Yang M Y, Zhang B, Yang G, Wang S G and Wang K Y 2015 Chin. Phys. B 24 077501
[27] Kittel C 1949 Rev. Mod. Phys. 21 541
[28] Jen S U, Chiang H P, Chung C M and Kao M N 2001 J. Magnet. Magnet. Mater. 236 312
[29] Kim Y Y 2017 Materials 10 806
[30] Zhu F, Xie Z and Zhang Z 2018 AIP Advances 8 035321
[1] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[2] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[7] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[8] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[9] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[10] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[11] Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes
Ce Hu(胡策), Faguang Yan(闫法光), Yucai Li(李予才), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(9): 097505.
[12] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[13] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[14] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[15] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
No Suggested Reading articles found!