Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
TOPICAL REVIEW—Photodetector: materials, physics, and applications |
Prev
|
|
|
Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2 |
Wen Wen(文雯)1,2, Chunhe Dang(党春鹤)1,2, Liming Xie(谢黎明)1,2 |
1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Charge-density-wave (CDW) materials with strongly correlated electrons have broadband light absorption and ultrafast response to light irradiation, and hence hold great potential in photodetection. 1T-TaS2 is a typical CDW material with various thermodynamically CDW ground states at different temperatures and fertile out-of-equilibrium intermediate/hidden states. In particular, the light pulses can trigger melting of CDW ordering and also forms hidden states, which exhibits strikingly different electrical conductivity compared to the ground phase. Here, we review the recent research on phase transitions in 1T-TaS2 and their potential applications in photodetection. We also discuss the ultrafast melting of CDW ordering by ultrafast laser irradiation and the out-of-equilibrium intermediate/hidden states by optical/electrical pulse. For photodetection, demonstrations of photoconductors and bolometers are introduced. Finally, we discuss some of the challenges that remain.
|
Received: 23 February 2019
Revised: 18 March 2019
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
95.55.Rg
|
(Photoconductors and bolometers)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673058 and 21822502), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS031), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000). |
Corresponding Authors:
Liming Xie
E-mail: xielm@nanoctr.cn
|
Cite this article:
Wen Wen(文雯), Chunhe Dang(党春鹤), Liming Xie(谢黎明) Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2 2019 Chin. Phys. B 28 058504
|
[1] |
Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
|
[2] |
Keimer B and Moore J E 2017 Nat. Phys. 13 1045
|
[3] |
Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
|
[4] |
Yi S, Zhang Z and Cho J H 2018 Phys. Rev. B 97 041413
|
[5] |
Wilson J A, Disalvo F J and Mahajan S 1975 Adv. Phys. 24 117
|
[6] |
Gruner G 1988 Rev. Mod. Phys. 60 1129
|
[7] |
Xi X X, Zhao L, Wang Z F, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
|
[8] |
Porer M, Leierseder U, Menard J M, Dachraoui H, Mouchliadis L, Perakis I E, Heinzmann U, Demsar J, Rossnagel K and Huber R 2014 Nat. Mater. 13 857
|
[9] |
Huang C, Zhang E, Yuan X, Wang W, Liu Y, Zhang C, Ling J, Liu S and Xiu F 2017 Chin. Phys. B 26 067302
|
[10] |
Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J and Coronado E 2016 Nat. Commun. 7 11043
|
[11] |
Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
|
[12] |
Wei L L, Sun S S, Sun K, Liu Y, Shao D F, Lu W J, Sun Y P, Tian H F and Yang H X 2017 Chin. Phys. Lett. 34 086101
|
[13] |
Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 270
|
[14] |
Yoshida M, Suzuki R, Zhang Y J, Nakano M and Iwasa Y 2015 Sci. Adv. 1 e1500606
|
[15] |
Cho D, Gye G, Lee J, Lee S H, Wang L, Cheong S W and Yeom H W 2017 Nat. Commun. 8 392
|
[16] |
Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W and Yeom H W 2016 Nat. Commun. 7 10453
|
[17] |
Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tomanek D, Son Y W, Chen X H and Zhang Y B 2016 Nat. Commun. 7 10956
|
[18] |
Cho D, Cho Y H, Cheong S W, Kim K S and Yeom H W 2015 Phys. Rev. B 92 085132
|
[19] |
Dong L, Wang G Y, Zhu Z, Zhao C X, Yang X Y, Li A M, Chen J L, Guan D D, Li Y Y, Zheng H, Xie M H and Jia J F 2018 Chin. Phys. Lett. 35 066801
|
[20] |
Lahoud E, Meetei O N, Chaska K B, Kanigel A and Trivedi N 2014 Phys. Rev. Lett. 112 206402
|
[21] |
Shen W, Ge Y Z, Liu A Y, Krishnamurthy H R, Devereaux T P and Freericks J K 2014 Phys. Rev. Lett. 112 176404
|
[22] |
Ligges M, Avigo I, Golez D, Strand H U R, Beyazit Y, Hanff K, Diekmann F, Stojchevska L, Kallane M, Zhou P, Rossnagel K, Eckstein M, Werner P and Bovensiepen U 2018 Phys. Rev. Lett. 120 166401
|
[23] |
Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallane M, Marczynski-Buhlow M, Hennies F, Bauer M, Fohlisch A, Kipp L, Wurth W and Rossnagel K 2010 Phys. Rev. Lett. 105 187401
|
[24] |
Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Wolf M, Berger H, Biermann S and Georges A 2008 New J. Phys. 10 053019
|
[25] |
Haupt K, Eichberger M, Erasmus N, Rohwer A, Demsar J, Rossnagel K and Schwoerer H 2016 Phys. Rev. Lett. 116 016402
|
[26] |
Laulhe C, Huber T, Lantz G, Ferrer A, Mariager S O, Grubel S, Rittmann J, Johnson J A, Esposito V, Lubcke A, Huber L, Kubli M, Savoini M, Jacques V L R, Cario L, Corraze B, Janod E, Ingold G, Beaud P, Johnson S L and Ravy S 2017 Phys. Rev. Lett. 118 247401
|
[27] |
Vogelgesang S, Storeck G, Horstmann J G, Diekmann T, Sivis M, Schramm S, Rossnagel K, Schafer S and Ropers C 2018 Nat. Phys. 14 184
|
[28] |
Albertini O R, Zhao R, McCann R L, Feng S, Terrones M, Freericks J K, Robinson J A and Liu A Y 2016 Phys. Rev. B 93 214109
|
[29] |
Zhao R, Wang Y, Deng D, Luo X, Lu W J, Sun Y P, Liu Z K, Chen L C and Robinson J 2017 Nano Lett. 17 3471
|
[30] |
Wang X S, Liu H N, Wu J X, Lin J H, He W, Wang H, Shi X H, Suenaga K and Xie L M 2018 Adv. Mater. 30 1800074
|
[31] |
He R, Okamoto J, Ye Z, Ye G, Anderson H, Dai X, Wu X, Hu J, Liu Y, Lu W, Sun Y, Pasupathy A N and Tsen A W 2016 Phys. Rev. B 94 201108
|
[32] |
Hu Q, Yin C, Zhang L, Lei L, Wang Z, Chen Z, Tang J and Ang R 2018 Chin. Phys. B 27 017104
|
[33] |
Liu G X, Rumyantsev S, Bloodgood M A, Salguero T T and Balandin A A 2018 Nano Lett. 18 3630
|
[34] |
Liu G X, Debnath B, Pope T R, Salguero T T, Lake R K and Balandin A A 2016 Nat. Nanotechnol. 11 845
|
[35] |
Zhu C, Chen Y, Liu F C, Zheng S J, Li X B, Chaturvedi A, Zhou J D, Fu Q D, He Y M, Zeng Q S, Fan H J, Zhang H, Liu W J, Yu T and Liu Z 2018 ACS Nano 12 11203
|
[36] |
Yoshida M, Gokuden T, Suzuki R, Nakano M and Iwasa Y 2017 Phys. Rev. B 95 121405
|
[37] |
Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S and Mihailovic D 2014 Science 344 177
|
[38] |
Vaskivskyi I, Gospodaric J, Brazovskii S, Svetin D, Sutar P, Goreshnik E, Mihailovic I A, Mertelj T and Mihailovic D 2015 Sci. Adv. 1 e1500168
|
[39] |
Vaskivskyi I, Mihailovic I A, Brazovskii S, Gospodaric J, Mertelj T, Svetin D, Sutar P and Mihailovic D 2016 Nat. Commun. 7 11442
|
[40] |
Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A and Datta S 2015 Nano Lett. 15 1861
|
[41] |
Tsen A W, Hovden R, Wang D, Kim Y D, Okamoto J, Spoth K A, Liu Y, Lu W, Sun Y, Hone J C, Kourkoutis L F, Kim P and Pasupathy A N 2015 Proc. Natl. Acad. Sci. USA 112 15054
|
[42] |
Cao Y F, Cai K M, Li L J, Lu W J, Sun Y P and Wang K Y 2014 Chin. Phys. Lett. 31 077203
|
[43] |
Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 125126
|
[44] |
Wen W, Zhu Y, Dang C, Chen W and Xie L 2019 Nano Lett. 19 1805
|
[45] |
Fu W, Chen Y, Lin J, Wang X, Zeng Q, Zhou J, Zheng L, Wang H, He Y, He H, Fu Q, Suenaga K, Yu T and Liu Z 2016 Chem. Mater. 28 7613
|
[46] |
Huan Y H, Shi J P, Zou X L, Gong Y, Zhang Z P, Li M H, Zhao L Y, Xu R Z, Jiang S L, Zhou X B, Hong M, Xie C Y, Li H, Lang X Y, Zhang Q, Gu L, Yan X Q and Zhang Y F 2018 Adv. Mater. 30 1705916
|
[47] |
Wu D, Ma Y, Niu Y, Liu Q, Dong T, Zhang S, Niu J, Zhou H, Wei J, Wang Y, Zhao Z and Wang N 2018 Sci. Adv. 4 eaao3057
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|