Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 058504    DOI: 10.1088/1674-1056/28/5/058504
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev  

Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2

Wen Wen(文雯)1,2, Chunhe Dang(党春鹤)1,2, Liming Xie(谢黎明)1,2
1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Charge-density-wave (CDW) materials with strongly correlated electrons have broadband light absorption and ultrafast response to light irradiation, and hence hold great potential in photodetection. 1T-TaS2 is a typical CDW material with various thermodynamically CDW ground states at different temperatures and fertile out-of-equilibrium intermediate/hidden states. In particular, the light pulses can trigger melting of CDW ordering and also forms hidden states, which exhibits strikingly different electrical conductivity compared to the ground phase. Here, we review the recent research on phase transitions in 1T-TaS2 and their potential applications in photodetection. We also discuss the ultrafast melting of CDW ordering by ultrafast laser irradiation and the out-of-equilibrium intermediate/hidden states by optical/electrical pulse. For photodetection, demonstrations of photoconductors and bolometers are introduced. Finally, we discuss some of the challenges that remain.

Keywords:  charge density wave      phase transition      1T-TaS2      photodetection  
Received:  23 February 2019      Revised:  18 March 2019      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  95.55.Rg (Photoconductors and bolometers)  
  71.45.Lr (Charge-density-wave systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21673058 and 21822502), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS031), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).

Corresponding Authors:  Liming Xie     E-mail:  xielm@nanoctr.cn

Cite this article: 

Wen Wen(文雯), Chunhe Dang(党春鹤), Liming Xie(谢黎明) Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2 2019 Chin. Phys. B 28 058504

[1] Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
[2] Keimer B and Moore J E 2017 Nat. Phys. 13 1045
[3] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[4] Yi S, Zhang Z and Cho J H 2018 Phys. Rev. B 97 041413
[5] Wilson J A, Disalvo F J and Mahajan S 1975 Adv. Phys. 24 117
[6] Gruner G 1988 Rev. Mod. Phys. 60 1129
[7] Xi X X, Zhao L, Wang Z F, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
[8] Porer M, Leierseder U, Menard J M, Dachraoui H, Mouchliadis L, Perakis I E, Heinzmann U, Demsar J, Rossnagel K and Huber R 2014 Nat. Mater. 13 857
[9] Huang C, Zhang E, Yuan X, Wang W, Liu Y, Zhang C, Ling J, Liu S and Xiu F 2017 Chin. Phys. B 26 067302
[10] Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J and Coronado E 2016 Nat. Commun. 7 11043
[11] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[12] Wei L L, Sun S S, Sun K, Liu Y, Shao D F, Lu W J, Sun Y P, Tian H F and Yang H X 2017 Chin. Phys. Lett. 34 086101
[13] Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 270
[14] Yoshida M, Suzuki R, Zhang Y J, Nakano M and Iwasa Y 2015 Sci. Adv. 1 e1500606
[15] Cho D, Gye G, Lee J, Lee S H, Wang L, Cheong S W and Yeom H W 2017 Nat. Commun. 8 392
[16] Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W and Yeom H W 2016 Nat. Commun. 7 10453
[17] Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tomanek D, Son Y W, Chen X H and Zhang Y B 2016 Nat. Commun. 7 10956
[18] Cho D, Cho Y H, Cheong S W, Kim K S and Yeom H W 2015 Phys. Rev. B 92 085132
[19] Dong L, Wang G Y, Zhu Z, Zhao C X, Yang X Y, Li A M, Chen J L, Guan D D, Li Y Y, Zheng H, Xie M H and Jia J F 2018 Chin. Phys. Lett. 35 066801
[20] Lahoud E, Meetei O N, Chaska K B, Kanigel A and Trivedi N 2014 Phys. Rev. Lett. 112 206402
[21] Shen W, Ge Y Z, Liu A Y, Krishnamurthy H R, Devereaux T P and Freericks J K 2014 Phys. Rev. Lett. 112 176404
[22] Ligges M, Avigo I, Golez D, Strand H U R, Beyazit Y, Hanff K, Diekmann F, Stojchevska L, Kallane M, Zhou P, Rossnagel K, Eckstein M, Werner P and Bovensiepen U 2018 Phys. Rev. Lett. 120 166401
[23] Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallane M, Marczynski-Buhlow M, Hennies F, Bauer M, Fohlisch A, Kipp L, Wurth W and Rossnagel K 2010 Phys. Rev. Lett. 105 187401
[24] Perfetti L, Loukakos P A, Lisowski M, Bovensiepen U, Wolf M, Berger H, Biermann S and Georges A 2008 New J. Phys. 10 053019
[25] Haupt K, Eichberger M, Erasmus N, Rohwer A, Demsar J, Rossnagel K and Schwoerer H 2016 Phys. Rev. Lett. 116 016402
[26] Laulhe C, Huber T, Lantz G, Ferrer A, Mariager S O, Grubel S, Rittmann J, Johnson J A, Esposito V, Lubcke A, Huber L, Kubli M, Savoini M, Jacques V L R, Cario L, Corraze B, Janod E, Ingold G, Beaud P, Johnson S L and Ravy S 2017 Phys. Rev. Lett. 118 247401
[27] Vogelgesang S, Storeck G, Horstmann J G, Diekmann T, Sivis M, Schramm S, Rossnagel K, Schafer S and Ropers C 2018 Nat. Phys. 14 184
[28] Albertini O R, Zhao R, McCann R L, Feng S, Terrones M, Freericks J K, Robinson J A and Liu A Y 2016 Phys. Rev. B 93 214109
[29] Zhao R, Wang Y, Deng D, Luo X, Lu W J, Sun Y P, Liu Z K, Chen L C and Robinson J 2017 Nano Lett. 17 3471
[30] Wang X S, Liu H N, Wu J X, Lin J H, He W, Wang H, Shi X H, Suenaga K and Xie L M 2018 Adv. Mater. 30 1800074
[31] He R, Okamoto J, Ye Z, Ye G, Anderson H, Dai X, Wu X, Hu J, Liu Y, Lu W, Sun Y, Pasupathy A N and Tsen A W 2016 Phys. Rev. B 94 201108
[32] Hu Q, Yin C, Zhang L, Lei L, Wang Z, Chen Z, Tang J and Ang R 2018 Chin. Phys. B 27 017104
[33] Liu G X, Rumyantsev S, Bloodgood M A, Salguero T T and Balandin A A 2018 Nano Lett. 18 3630
[34] Liu G X, Debnath B, Pope T R, Salguero T T, Lake R K and Balandin A A 2016 Nat. Nanotechnol. 11 845
[35] Zhu C, Chen Y, Liu F C, Zheng S J, Li X B, Chaturvedi A, Zhou J D, Fu Q D, He Y M, Zeng Q S, Fan H J, Zhang H, Liu W J, Yu T and Liu Z 2018 ACS Nano 12 11203
[36] Yoshida M, Gokuden T, Suzuki R, Nakano M and Iwasa Y 2017 Phys. Rev. B 95 121405
[37] Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S and Mihailovic D 2014 Science 344 177
[38] Vaskivskyi I, Gospodaric J, Brazovskii S, Svetin D, Sutar P, Goreshnik E, Mihailovic I A, Mertelj T and Mihailovic D 2015 Sci. Adv. 1 e1500168
[39] Vaskivskyi I, Mihailovic I A, Brazovskii S, Gospodaric J, Mertelj T, Svetin D, Sutar P and Mihailovic D 2016 Nat. Commun. 7 11442
[40] Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A and Datta S 2015 Nano Lett. 15 1861
[41] Tsen A W, Hovden R, Wang D, Kim Y D, Okamoto J, Spoth K A, Liu Y, Lu W, Sun Y, Hone J C, Kourkoutis L F, Kim P and Pasupathy A N 2015 Proc. Natl. Acad. Sci. USA 112 15054
[42] Cao Y F, Cai K M, Li L J, Lu W J, Sun Y P and Wang K Y 2014 Chin. Phys. Lett. 31 077203
[43] Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B and Sun Y P 2016 Phys. Rev. B 94 125126
[44] Wen W, Zhu Y, Dang C, Chen W and Xie L 2019 Nano Lett. 19 1805
[45] Fu W, Chen Y, Lin J, Wang X, Zeng Q, Zhou J, Zheng L, Wang H, He Y, He H, Fu Q, Suenaga K, Yu T and Liu Z 2016 Chem. Mater. 28 7613
[46] Huan Y H, Shi J P, Zou X L, Gong Y, Zhang Z P, Li M H, Zhao L Y, Xu R Z, Jiang S L, Zhou X B, Hong M, Xie C Y, Li H, Lang X Y, Zhang Q, Gu L, Yan X Q and Zhang Y F 2018 Adv. Mater. 30 1705916
[47] Wu D, Ma Y, Niu Y, Liu Q, Dong T, Zhang S, Niu J, Zhou H, Wei J, Wang Y, Zhao Z and Wang N 2018 Sci. Adv. 4 eaao3057
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!