1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China; 3 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 4 Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University), Ministry of Education, Hefei 230601, China; 5 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200031, China; 6 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
Abstract Layered lanthanum silver antimonide LaAgSb2 exhibits both charge density wave (CDW) order and Dirac-cone-like band structure at ambient pressure. Here, we systematically investigate the pressure evolution of structural and electronic properties of LaAgSb2 single crystal. We show that the CDW order is destabilized under compression, as evidenced by the gradual suppression of magnetoresistance. At PC~ 22 GPa, synchrotron x-ray diffraction and Raman scattering measurements reveal a structural modification at room-temperature. Meanwhile, the sign change of the Hall coefficient is observed at 5 K. Our results demonstrate the tunability of CDW order in the pressurized LaAgSb2 single crystal, which can be helpful for its potential applications in the next-generation devices.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305700, 2017YFA0403600, and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U19A2093, U1932152, U1632162, 12004004, 11874362, 11804344, 11704387, and 11674325), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1908085QA18, 2008085QA40, and 1808085MA06), the Users with Excellence Project of Hefei Science Center CAS (Grant Nos. 2018HSC-UE012, 2020HSC-CIP014, 2020HSC-UE015, and 2021HSC-UE008), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province (Grant No. AHHM-FX-2020-02). Yonghui Zhou was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020443).
Corresponding Authors:
Chao An, Xiaoping Yang, Zhaorong Yang
E-mail: chaoan@ahu.edu.cn;xpyang@hmfl.ac.cn;zryang@issp.ac.cn
Cite this article:
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣) Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure 2021 Chin. Phys. B 30 076201
[1] Chen R Y, Zhang S J, Zhang M Y, Dong T and Wang N L 2017 Phys. Rev. Lett.118 107402 [2] Sidorov V A, Bauer E D, Frederick N A, Jeffries J R, Nakatsuji S, Moreno N O, Thompson J D, Maple M B and Fisk Z 2003 Phys. Rev. B67 224419 [3] Myers K D, Canfield P C, Kalatsky V A and Pokrovsky V L 1999 Phys. Rev. B59 1121 [4] Song C, Good W, Wermeille D, Goldman A I, Bud'ko S L and Canfield P C 2002 Phys. Rev. B65 172415 [5] Prozorov R, Vannette M D, Samolyuk G D, Law S A, Bud'ko S L and Canfield P C 2007 Phys. Rev. B75 014413 [6] Wang K F and Petrovic C 2012 Phys. Rev. B86 155213 [7] Shi X, Richard P, Wang K F, Liu M, Matt C E, Xu N, Dhaka R S, Ristic Z, Qian T, Yang Y F, Yang C, Shi M and Ding H 2016 Phys. Rev. B93 081105 [8] Myers K D, Bud'ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater.205 27 [9] Song C, Park J, Koo J, Lee K B, Rhee J Y, Bud'ko S L, Canfield P C, Harmon B N and Goldman A I 2003 Phys. Rev. B68 035113 [10] Bud'ko S L, Wiener T A, Ribeiro R A, Canfield P C, Vogt T and Lacerda A H 2006 Phys. Rev. B73 184111 [11] Torikachvili M S, Bud'ko S L, Law S A, Tillman M E, Mun E D and Canfield P C 2007 Phys. Rev. B76 235110 [12] Watanabe Y, Inada Y, Hidaka H, Kotegawa H, Kobayashi T C, Matsuda T D and Aoki D 2006 Physica B378-380 827 [13] Mun E D, Bud'ko S L and Canfiel P C 2011 J. Phys.: Condens. Matter23 476001 [14] Yomo R, Yamaya K, Abliz M, Hedo M and Uwatoko Y 2005 Phys. Rev. B71 132508 [15] Akiba K, Nishimori H, Umeshita N and Kobayashi T C 2021 Phys. Rev. B103 085134 [16] Zhang L L, Yan S, Jiang S, Yang K, Wang H, He S M, Liang D X, Zhang L, He Y, Lan X Y, Mao C W, Wang J, Jiang H, Zheng Y, Dong Z H, Zeng L Y and Guo L A 2015 Nucl. Sci. Tech.26 060101 [17] Prescher C and Prakapenka V B 2015 High Pressure Res.35 223 [18] Hunter B A 1998 Rietica – a Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998) http://www.rietica.org. [19] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.91 4673 [20] Zhou Y, Lu P, Du Y, Zhu X, Zhang G, Zhang R, Shao D, Chen X, Wang X, Tian M, Sun J, Wan X, Yang Z, Yang W, Zhang Y and Xing D 2016 Phys. Rev. Lett.117 146402 [21] Chen C H, Zhou Y H, Chen X L, Han T, An C, Zhou Y, Yuan Y F, Zhang B W, Wang S Y, Zhang R R, Zhang L L, Zhang C J, Yang Z R, Delong L E and Cao G 2020 Phys. Rev. B101 144102 [22] Zhang M, Wang X Q, Azizur Rahman, Zeng Q S, Huang D, Dai R C, Wang Z P and Zhang Z M 2018 Appl. Phys. Lett.112 041907 [23] Enderlein C, Ramos S M, Bittencourt M, Continentino M A, Brewer W and Baggio-Saitovich E 2013 J. Appl. Phys.114 143711 [24] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature458 182 [25] Guo J, Wang H H, Von Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J and Sun L L 2017 Phys. Rev. B96 224513 [26] Zhou Y H, Chen C H, Zhou Y, Chen X L, Gu C C, An C, Zhang B W, Yuan Y F, Wu H, Zhang R R, Zhang L L, Zhu X D, Yang X P and Yang Z R 2019 Phys. Rev. B99 125104 [27] Kenichi T 1999 Phys. Rev. B60 6171 [28] Gu C C, Hu J, Chen X L, Guo Z P, Fu B T, Zhou Y H, An C, Zhou Y, Zhang R R, Xi C Y, Gu Q Y, Park C, Shu H Y, Yang W G, Pi L, Zhang Y H, Yao Y G, Yang Z R, Zhou J H, Sun J, Mao Z Q and Tian M L 2019 Phys. Rev. B100 205124 [29] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B97 085107 [30] An C, Chen X L, Wu B, Zhou Y H, Zhou Y, Zhang R R, Park C Y, Song F Q and Yang Z R 2018 Phys. Rev. B97 174516 [31] Nakayama A, Aoki K and Carlón R P 2001 Phys. Rev. B64 064104 [32] Errandonea D, Manjón F J, Garro N, Rodríguez-Hernández P, Radescu S, Mujica A, Muñoz A and Tu C Y 2008 Phys. Rev. B78 054116 [33] Muthu D V S, Teredesai P, Saha S, Suchitra, Waghmare U V, Sood A K and Rao C N R 2015 Phys. Rev. B91 224308 [34] Boulova M, Rosman N, Bouvier P and Lucazeau G 2002 J. Phys.: Condens. Matter14 5849 [35] Zarechnaya E, Dubrovinskaia N, Caracas R, Merlini M, Hanfland M, Filinchuk Y, Chernyshov D, Dmitriev V and Dubrovinsky L 2010 Phys. Rev. B82 184111 [36] Pereira A L J, Gracia L, Santamaría-Pérez D, Vilaplana R, Manjón F J, Errandonea D, Nalin M and Beltrán A 2012 Phys. Rev. B85 174108 [37] Zhao Z, Wang S B, Zhang H J and Mao W L 2013 Phys. Rev. B88 024120 [38] Ibáñez J, Sans J A, Popescu C, López-Vidrier J, Elvira-Betanzos J J, Cuenca-Gotor V P, Gomis O, Manjón F J, Rodríguez-Hernández P and Muñoz A 2016 J. Phys. Chem. C120 10547 [39] Wang L R, Wang K, Xiao G J, Zeng Q S and Zou B 2016 J. Phys. Chem. Lett.7 5273 [40] Zhang L, Zeng Q X and Wang K 2017 J. Phys. Chem. Lett.8 3752 [41] Pal S, Arora R, Roychowdhury S, Harnagea L, Saurabh K, Shenoy S, Muthu D V S, Biswas K, Waghmare U V and Sood A K 2020 Phys. Rev. B101 155202 [42] Lifshitz I M 1960 Sov. Phys. JPET11 1130 [43] Vilaplana R, Santamaría-Pérez D, Gomis O, Manjón F J, González J, Segura A, Muñoz A, Rodríguez-Hernández P, Pérez-González E, Marín-Borrás V, Muñoz-Sanjose V, Drasar C and Kucek V 2011 Phys. Rev. B84 184110 [44] Vilaplana R, Gomis O, Manjón F J, Segura A, Pérezgonzález E, Rodríguez-Hernández P, Muñoz A, González J, Marín-Borrás V, Muñoz-Sanjosé V, Drasar C and Kucek V 2011 Phys. Rev. B84 104112 [45] Gomis O, Vilaplana R, Manjón F J, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Kucek V and Drasar C 2011 Phys. Rev. B84 174305 [46] Bera A, Pal K, Muthu D V S, Sen S, Guptasarma P, Waghmare U V and Sood A K 2013 Phys. Rev. Lett.110 107401 [47] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B97 085107
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.