Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076201    DOI: 10.1088/1674-1056/abf643

Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure

Bowen Zhang(张博文)1,2, Chao An(安超)3,4,†, Xuliang Chen(陈绪亮)1,6, Ying Zhou(周颖)3, Yonghui Zhou(周永惠)1,6, Yifang Yuan(袁亦方)1, Chunhua Chen(陈春华)1, Lili Zhang(张丽丽)5, Xiaoping Yang(杨晓萍)1,6,‡, and Zhaorong Yang(杨昭荣)1,3,6,§
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China;
3 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
4 Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University), Ministry of Education, Hefei 230601, China;
5 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200031, China;
6 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
Abstract  Layered lanthanum silver antimonide LaAgSb2 exhibits both charge density wave (CDW) order and Dirac-cone-like band structure at ambient pressure. Here, we systematically investigate the pressure evolution of structural and electronic properties of LaAgSb2 single crystal. We show that the CDW order is destabilized under compression, as evidenced by the gradual suppression of magnetoresistance. At PC~ 22 GPa, synchrotron x-ray diffraction and Raman scattering measurements reveal a structural modification at room-temperature. Meanwhile, the sign change of the Hall coefficient is observed at 5 K. Our results demonstrate the tunability of CDW order in the pressurized LaAgSb2 single crystal, which can be helpful for its potential applications in the next-generation devices.
Keywords:  high pressure      charge density wave      crystal structure      electrical transport  
Received:  07 March 2021      Revised:  05 April 2021      Accepted manuscript online:  09 April 2021
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.C- (X-ray diffraction and scattering)  
  72.15.-v (Electronic conduction in metals and alloys)  
  74.62.Fj (Effects of pressure)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305700, 2017YFA0403600, and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U19A2093, U1932152, U1632162, 12004004, 11874362, 11804344, 11704387, and 11674325), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1908085QA18, 2008085QA40, and 1808085MA06), the Users with Excellence Project of Hefei Science Center CAS (Grant Nos. 2018HSC-UE012, 2020HSC-CIP014, 2020HSC-UE015, and 2021HSC-UE008), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province (Grant No. AHHM-FX-2020-02). Yonghui Zhou was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020443).
Corresponding Authors:  Chao An, Xiaoping Yang, Zhaorong Yang     E-mail:;;

Cite this article: 

Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣) Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure 2021 Chin. Phys. B 30 076201

[1] Chen R Y, Zhang S J, Zhang M Y, Dong T and Wang N L 2017 Phys. Rev. Lett. 118 107402
[2] Sidorov V A, Bauer E D, Frederick N A, Jeffries J R, Nakatsuji S, Moreno N O, Thompson J D, Maple M B and Fisk Z 2003 Phys. Rev. B 67 224419
[3] Myers K D, Canfield P C, Kalatsky V A and Pokrovsky V L 1999 Phys. Rev. B 59 1121
[4] Song C, Good W, Wermeille D, Goldman A I, Bud'ko S L and Canfield P C 2002 Phys. Rev. B 65 172415
[5] Prozorov R, Vannette M D, Samolyuk G D, Law S A, Bud'ko S L and Canfield P C 2007 Phys. Rev. B 75 014413
[6] Wang K F and Petrovic C 2012 Phys. Rev. B 86 155213
[7] Shi X, Richard P, Wang K F, Liu M, Matt C E, Xu N, Dhaka R S, Ristic Z, Qian T, Yang Y F, Yang C, Shi M and Ding H 2016 Phys. Rev. B 93 081105
[8] Myers K D, Bud'ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27
[9] Song C, Park J, Koo J, Lee K B, Rhee J Y, Bud'ko S L, Canfield P C, Harmon B N and Goldman A I 2003 Phys. Rev. B 68 035113
[10] Bud'ko S L, Wiener T A, Ribeiro R A, Canfield P C, Vogt T and Lacerda A H 2006 Phys. Rev. B 73 184111
[11] Torikachvili M S, Bud'ko S L, Law S A, Tillman M E, Mun E D and Canfield P C 2007 Phys. Rev. B 76 235110
[12] Watanabe Y, Inada Y, Hidaka H, Kotegawa H, Kobayashi T C, Matsuda T D and Aoki D 2006 Physica B 378-380 827
[13] Mun E D, Bud'ko S L and Canfiel P C 2011 J. Phys.: Condens. Matter 23 476001
[14] Yomo R, Yamaya K, Abliz M, Hedo M and Uwatoko Y 2005 Phys. Rev. B 71 132508
[15] Akiba K, Nishimori H, Umeshita N and Kobayashi T C 2021 Phys. Rev. B 103 085134
[16] Zhang L L, Yan S, Jiang S, Yang K, Wang H, He S M, Liang D X, Zhang L, He Y, Lan X Y, Mao C W, Wang J, Jiang H, Zheng Y, Dong Z H, Zeng L Y and Guo L A 2015 Nucl. Sci. Tech. 26 060101
[17] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[18] Hunter B A 1998 Rietica – a Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998)
[19] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[20] Zhou Y, Lu P, Du Y, Zhu X, Zhang G, Zhang R, Shao D, Chen X, Wang X, Tian M, Sun J, Wan X, Yang Z, Yang W, Zhang Y and Xing D 2016 Phys. Rev. Lett. 117 146402
[21] Chen C H, Zhou Y H, Chen X L, Han T, An C, Zhou Y, Yuan Y F, Zhang B W, Wang S Y, Zhang R R, Zhang L L, Zhang C J, Yang Z R, Delong L E and Cao G 2020 Phys. Rev. B 101 144102
[22] Zhang M, Wang X Q, Azizur Rahman, Zeng Q S, Huang D, Dai R C, Wang Z P and Zhang Z M 2018 Appl. Phys. Lett. 112 041907
[23] Enderlein C, Ramos S M, Bittencourt M, Continentino M A, Brewer W and Baggio-Saitovich E 2013 J. Appl. Phys. 114 143711
[24] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[25] Guo J, Wang H H, Von Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J and Sun L L 2017 Phys. Rev. B 96 224513
[26] Zhou Y H, Chen C H, Zhou Y, Chen X L, Gu C C, An C, Zhang B W, Yuan Y F, Wu H, Zhang R R, Zhang L L, Zhu X D, Yang X P and Yang Z R 2019 Phys. Rev. B 99 125104
[27] Kenichi T 1999 Phys. Rev. B 60 6171
[28] Gu C C, Hu J, Chen X L, Guo Z P, Fu B T, Zhou Y H, An C, Zhou Y, Zhang R R, Xi C Y, Gu Q Y, Park C, Shu H Y, Yang W G, Pi L, Zhang Y H, Yao Y G, Yang Z R, Zhou J H, Sun J, Mao Z Q and Tian M L 2019 Phys. Rev. B 100 205124
[29] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107
[30] An C, Chen X L, Wu B, Zhou Y H, Zhou Y, Zhang R R, Park C Y, Song F Q and Yang Z R 2018 Phys. Rev. B 97 174516
[31] Nakayama A, Aoki K and Carlón R P 2001 Phys. Rev. B 64 064104
[32] Errandonea D, Manjón F J, Garro N, Rodríguez-Hernández P, Radescu S, Mujica A, Muñoz A and Tu C Y 2008 Phys. Rev. B 78 054116
[33] Muthu D V S, Teredesai P, Saha S, Suchitra, Waghmare U V, Sood A K and Rao C N R 2015 Phys. Rev. B 91 224308
[34] Boulova M, Rosman N, Bouvier P and Lucazeau G 2002 J. Phys.: Condens. Matter 14 5849
[35] Zarechnaya E, Dubrovinskaia N, Caracas R, Merlini M, Hanfland M, Filinchuk Y, Chernyshov D, Dmitriev V and Dubrovinsky L 2010 Phys. Rev. B 82 184111
[36] Pereira A L J, Gracia L, Santamaría-Pérez D, Vilaplana R, Manjón F J, Errandonea D, Nalin M and Beltrán A 2012 Phys. Rev. B 85 174108
[37] Zhao Z, Wang S B, Zhang H J and Mao W L 2013 Phys. Rev. B 88 024120
[38] Ibáñez J, Sans J A, Popescu C, López-Vidrier J, Elvira-Betanzos J J, Cuenca-Gotor V P, Gomis O, Manjón F J, Rodríguez-Hernández P and Muñoz A 2016 J. Phys. Chem. C 120 10547
[39] Wang L R, Wang K, Xiao G J, Zeng Q S and Zou B 2016 J. Phys. Chem. Lett. 7 5273
[40] Zhang L, Zeng Q X and Wang K 2017 J. Phys. Chem. Lett. 8 3752
[41] Pal S, Arora R, Roychowdhury S, Harnagea L, Saurabh K, Shenoy S, Muthu D V S, Biswas K, Waghmare U V and Sood A K 2020 Phys. Rev. B 101 155202
[42] Lifshitz I M 1960 Sov. Phys. JPET 11 1130
[43] Vilaplana R, Santamaría-Pérez D, Gomis O, Manjón F J, González J, Segura A, Muñoz A, Rodríguez-Hernández P, Pérez-González E, Marín-Borrás V, Muñoz-Sanjose V, Drasar C and Kucek V 2011 Phys. Rev. B 84 184110
[44] Vilaplana R, Gomis O, Manjón F J, Segura A, Pérezgonzález E, Rodríguez-Hernández P, Muñoz A, González J, Marín-Borrás V, Muñoz-Sanjosé V, Drasar C and Kucek V 2011 Phys. Rev. B 84 104112
[45] Gomis O, Vilaplana R, Manjón F J, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Kucek V and Drasar C 2011 Phys. Rev. B 84 174305
[46] Bera A, Pal K, Muthu D V S, Sen S, Guptasarma P, Waghmare U V and Sood A K 2013 Phys. Rev. Lett. 110 107401
[47] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[4] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[9] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[10] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[11] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[12] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
No Suggested Reading articles found!