CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure |
Bowen Zhang(张博文)1,2, Chao An(安超)3,4,†, Xuliang Chen(陈绪亮)1,6, Ying Zhou(周颖)3, Yonghui Zhou(周永惠)1,6, Yifang Yuan(袁亦方)1, Chunhua Chen(陈春华)1, Lili Zhang(张丽丽)5, Xiaoping Yang(杨晓萍)1,6,‡, and Zhaorong Yang(杨昭荣)1,3,6,§ |
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China; 3 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 4 Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University), Ministry of Education, Hefei 230601, China; 5 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200031, China; 6 High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China |
|
|
Abstract Layered lanthanum silver antimonide LaAgSb2 exhibits both charge density wave (CDW) order and Dirac-cone-like band structure at ambient pressure. Here, we systematically investigate the pressure evolution of structural and electronic properties of LaAgSb2 single crystal. We show that the CDW order is destabilized under compression, as evidenced by the gradual suppression of magnetoresistance. At PC~ 22 GPa, synchrotron x-ray diffraction and Raman scattering measurements reveal a structural modification at room-temperature. Meanwhile, the sign change of the Hall coefficient is observed at 5 K. Our results demonstrate the tunability of CDW order in the pressurized LaAgSb2 single crystal, which can be helpful for its potential applications in the next-generation devices.
|
Received: 07 March 2021
Revised: 05 April 2021
Accepted manuscript online: 09 April 2021
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
61.05.C-
|
(X-ray diffraction and scattering)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305700, 2017YFA0403600, and 2016YFA0401804), the National Natural Science Foundation of China (Grant Nos. U1632275, U19A2093, U1932152, U1632162, 12004004, 11874362, 11804344, 11704387, and 11674325), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1908085QA18, 2008085QA40, and 1808085MA06), the Users with Excellence Project of Hefei Science Center CAS (Grant Nos. 2018HSC-UE012, 2020HSC-CIP014, 2020HSC-UE015, and 2021HSC-UE008), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (Grant No. 2018ZYFX002). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province (Grant No. AHHM-FX-2020-02). Yonghui Zhou was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020443). |
Corresponding Authors:
Chao An, Xiaoping Yang, Zhaorong Yang
E-mail: chaoan@ahu.edu.cn;xpyang@hmfl.ac.cn;zryang@issp.ac.cn
|
Cite this article:
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣) Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure 2021 Chin. Phys. B 30 076201
|
[1] Chen R Y, Zhang S J, Zhang M Y, Dong T and Wang N L 2017 Phys. Rev. Lett. 118 107402 [2] Sidorov V A, Bauer E D, Frederick N A, Jeffries J R, Nakatsuji S, Moreno N O, Thompson J D, Maple M B and Fisk Z 2003 Phys. Rev. B 67 224419 [3] Myers K D, Canfield P C, Kalatsky V A and Pokrovsky V L 1999 Phys. Rev. B 59 1121 [4] Song C, Good W, Wermeille D, Goldman A I, Bud'ko S L and Canfield P C 2002 Phys. Rev. B 65 172415 [5] Prozorov R, Vannette M D, Samolyuk G D, Law S A, Bud'ko S L and Canfield P C 2007 Phys. Rev. B 75 014413 [6] Wang K F and Petrovic C 2012 Phys. Rev. B 86 155213 [7] Shi X, Richard P, Wang K F, Liu M, Matt C E, Xu N, Dhaka R S, Ristic Z, Qian T, Yang Y F, Yang C, Shi M and Ding H 2016 Phys. Rev. B 93 081105 [8] Myers K D, Bud'ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27 [9] Song C, Park J, Koo J, Lee K B, Rhee J Y, Bud'ko S L, Canfield P C, Harmon B N and Goldman A I 2003 Phys. Rev. B 68 035113 [10] Bud'ko S L, Wiener T A, Ribeiro R A, Canfield P C, Vogt T and Lacerda A H 2006 Phys. Rev. B 73 184111 [11] Torikachvili M S, Bud'ko S L, Law S A, Tillman M E, Mun E D and Canfield P C 2007 Phys. Rev. B 76 235110 [12] Watanabe Y, Inada Y, Hidaka H, Kotegawa H, Kobayashi T C, Matsuda T D and Aoki D 2006 Physica B 378-380 827 [13] Mun E D, Bud'ko S L and Canfiel P C 2011 J. Phys.: Condens. Matter 23 476001 [14] Yomo R, Yamaya K, Abliz M, Hedo M and Uwatoko Y 2005 Phys. Rev. B 71 132508 [15] Akiba K, Nishimori H, Umeshita N and Kobayashi T C 2021 Phys. Rev. B 103 085134 [16] Zhang L L, Yan S, Jiang S, Yang K, Wang H, He S M, Liang D X, Zhang L, He Y, Lan X Y, Mao C W, Wang J, Jiang H, Zheng Y, Dong Z H, Zeng L Y and Guo L A 2015 Nucl. Sci. Tech. 26 060101 [17] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223 [18] Hunter B A 1998 Rietica – a Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998) http://www.rietica.org. [19] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673 [20] Zhou Y, Lu P, Du Y, Zhu X, Zhang G, Zhang R, Shao D, Chen X, Wang X, Tian M, Sun J, Wan X, Yang Z, Yang W, Zhang Y and Xing D 2016 Phys. Rev. Lett. 117 146402 [21] Chen C H, Zhou Y H, Chen X L, Han T, An C, Zhou Y, Yuan Y F, Zhang B W, Wang S Y, Zhang R R, Zhang L L, Zhang C J, Yang Z R, Delong L E and Cao G 2020 Phys. Rev. B 101 144102 [22] Zhang M, Wang X Q, Azizur Rahman, Zeng Q S, Huang D, Dai R C, Wang Z P and Zhang Z M 2018 Appl. Phys. Lett. 112 041907 [23] Enderlein C, Ramos S M, Bittencourt M, Continentino M A, Brewer W and Baggio-Saitovich E 2013 J. Appl. Phys. 114 143711 [24] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182 [25] Guo J, Wang H H, Von Rohr F, Yi W, Zhou Y Z, Wang Z, Cai S, Zhang S, Li X D, Li Y C, Liu J, Yang K, Li A G, Jiang S, Wu Q, Xiang T, Cava R J and Sun L L 2017 Phys. Rev. B 96 224513 [26] Zhou Y H, Chen C H, Zhou Y, Chen X L, Gu C C, An C, Zhang B W, Yuan Y F, Wu H, Zhang R R, Zhang L L, Zhu X D, Yang X P and Yang Z R 2019 Phys. Rev. B 99 125104 [27] Kenichi T 1999 Phys. Rev. B 60 6171 [28] Gu C C, Hu J, Chen X L, Guo Z P, Fu B T, Zhou Y H, An C, Zhou Y, Zhang R R, Xi C Y, Gu Q Y, Park C, Shu H Y, Yang W G, Pi L, Zhang Y H, Yao Y G, Yang Z R, Zhou J H, Sun J, Mao Z Q and Tian M L 2019 Phys. Rev. B 100 205124 [29] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107 [30] An C, Chen X L, Wu B, Zhou Y H, Zhou Y, Zhang R R, Park C Y, Song F Q and Yang Z R 2018 Phys. Rev. B 97 174516 [31] Nakayama A, Aoki K and Carlón R P 2001 Phys. Rev. B 64 064104 [32] Errandonea D, Manjón F J, Garro N, Rodríguez-Hernández P, Radescu S, Mujica A, Muñoz A and Tu C Y 2008 Phys. Rev. B 78 054116 [33] Muthu D V S, Teredesai P, Saha S, Suchitra, Waghmare U V, Sood A K and Rao C N R 2015 Phys. Rev. B 91 224308 [34] Boulova M, Rosman N, Bouvier P and Lucazeau G 2002 J. Phys.: Condens. Matter 14 5849 [35] Zarechnaya E, Dubrovinskaia N, Caracas R, Merlini M, Hanfland M, Filinchuk Y, Chernyshov D, Dmitriev V and Dubrovinsky L 2010 Phys. Rev. B 82 184111 [36] Pereira A L J, Gracia L, Santamaría-Pérez D, Vilaplana R, Manjón F J, Errandonea D, Nalin M and Beltrán A 2012 Phys. Rev. B 85 174108 [37] Zhao Z, Wang S B, Zhang H J and Mao W L 2013 Phys. Rev. B 88 024120 [38] Ibáñez J, Sans J A, Popescu C, López-Vidrier J, Elvira-Betanzos J J, Cuenca-Gotor V P, Gomis O, Manjón F J, Rodríguez-Hernández P and Muñoz A 2016 J. Phys. Chem. C 120 10547 [39] Wang L R, Wang K, Xiao G J, Zeng Q S and Zou B 2016 J. Phys. Chem. Lett. 7 5273 [40] Zhang L, Zeng Q X and Wang K 2017 J. Phys. Chem. Lett. 8 3752 [41] Pal S, Arora R, Roychowdhury S, Harnagea L, Saurabh K, Shenoy S, Muthu D V S, Biswas K, Waghmare U V and Sood A K 2020 Phys. Rev. B 101 155202 [42] Lifshitz I M 1960 Sov. Phys. JPET 11 1130 [43] Vilaplana R, Santamaría-Pérez D, Gomis O, Manjón F J, González J, Segura A, Muñoz A, Rodríguez-Hernández P, Pérez-González E, Marín-Borrás V, Muñoz-Sanjose V, Drasar C and Kucek V 2011 Phys. Rev. B 84 184110 [44] Vilaplana R, Gomis O, Manjón F J, Segura A, Pérezgonzález E, Rodríguez-Hernández P, Muñoz A, González J, Marín-Borrás V, Muñoz-Sanjosé V, Drasar C and Kucek V 2011 Phys. Rev. B 84 104112 [45] Gomis O, Vilaplana R, Manjón F J, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Kucek V and Drasar C 2011 Phys. Rev. B 84 174305 [46] Bera A, Pal K, Muthu D V S, Sen S, Guptasarma P, Waghmare U V and Sood A K 2013 Phys. Rev. Lett. 110 107401 [47] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|