Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017404    DOI: 10.1088/1674-1056/ac4232
Special Issue: SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials Prev   Next  

Evolution of superconductivity and charge order in pressurized RbV3Sb5

Feng Du(杜锋)1,2, Shuaishuai Luo(罗帅帅)1,2, Rui Li(李蕊)1,2, Brenden R. Ortiz3, Ye Chen(陈晔)1,2, Stephen D. Wilson3, Yu Song(宋宇)1,2,†, and Huiqiu Yuan(袁辉球)1,2,4,‡
1 Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China;
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China;
3 Materials Department and California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States;
4 State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China
Abstract  The kagome metals AV3Sb5 (A= K, Rb, Cs) under ambient pressure exhibit an unusual charge order, from which superconductivity emerges. In this work, by applying hydrostatic pressure using a liquid pressure medium and carrying out electrical resistance measurements for RbV3Sb5, we find that the charge order becomes suppressed under a modest pressure pc (1.4 GPa<pc<1.6 GPa), while the superconducting transition temperature Tc is maximized. Tc is then gradually weakened with further increase of pressure and reaches a minimum around 14.3 GPa, before exhibiting another {maximum} around 22.8 GPa, signifying the presence of a second superconducting dome. Distinct normal state resistance anomalies are found to be associated with the second superconducting dome, similar to KV3Sb5. Our findings point to qualitatively similar temperature-pressure phase diagrams in KV3Sb5 and RbV3Sb5, {and suggest a close link} between the second superconducting dome and the high-pressure resistance anomalies.
Keywords:  kagome superconductor      temperature-pressure phase diagram      superconducting dome      hydrostatic pressure  
Received:  21 August 2021      Revised:  29 November 2021      Accepted manuscript online:  11 December 2021
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
  74.25.F- (Transport properties)  
Fund: This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303100 and 2016YFA0300202), the Key R&D Program of Zhejiang Province, China (Grant No. 2021C01002), the National Natural Science Foundation of China (Grant Nos. 11974306 and 12034017), and the Fundamental Research Funds for the Central Universities of China. S.D.W. and B.R.O. gratefully acknowledge support via the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i program under award DMR-1906325. B.R.O. also acknowledges support from the California NanoSystems Institute through the Elings fellowship program.
Corresponding Authors:  Yu Song, Huiqiu Yuan     E-mail:;

Cite this article: 

Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球) Evolution of superconductivity and charge order in pressurized RbV3Sb5 2022 Chin. Phys. B 31 017404

[1] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[2] Ortiz B R, Teicher S M, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[3] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403
[4] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[5] Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, McQueen T, Wilson S D and Ali M N 2020 Preprint arXiv: 2012.05898
[6] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[7] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Science Advances 6 eabb6003
[8] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[9] Kenney E M, Ortiz B R, Wang C, Wilson S D and Graf M J 2021 J. Phys.: Condens. Matter 33 235801
[10] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[11] Feng X, Jiang K, Wang Z and Hu J 2021 Science Bulletin 66 1384
[12] Setty C, Hu H, Chen L and Si Q 2021 arXiv: 2105.15204
[13] Lin Y P and Nandkishore R M 2021 arXiv: 2107.09050
[14] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y and Yuan H 2021 Sci. China-Phys. Mech. Astron. 64 107462
[15] Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z and Luo J 2021 Chin. Phys. Lett. 38 077402
[16] Xu H S, Yan Y J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y and Feng D L 2021 Phys. Rev. Lett. 127 187004
[17] Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y and Wen H H 2021 Nat. Commun. 12 6727
[18] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F and Li S Y 2021 Preprint arXiv: 2102.08356
[19] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[20] Chen K, Wang N, Yin Q, Gu Y, Jiang K, Tu Z, Gong C, Uwatoko Y, Sun J, Lei H, Hu J and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[21] Du F, Luo S, Ortiz B R, Chen Y, Duan W, Zhang D, Lu X, Wilson S D, Song Y and Yuan H 2021 Phys. Rev. B 103 l220504
[22] Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G and Chen X 2021 Chin. Phys. Lett. 38 057402
[23] Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Wang J, Yang H, An C, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J and Yang Z 2021 Phys. Rev. B 103 224513
[24] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2021 Preprint arXiv: 2104.14487
[25] Yin L, Zhang D, Chen C, Ye G, Yu F, Ortiz B R, Luo S, Duan W, Su H, Ying J, Wilson S D, Chen X, Yuan H, Song Y and Lu X 2021 Phys. Rev. B 104 174507
[26] Wang N N, Chen K Y, Yin Q W, Ma Y N N, Pan B Y, Yang X, Ji X Y, Wu S L, Shan P F, Xu S X, Tu Z J, Gong C S, Liu G T, Li G, Uwatoko Y, Dong X L, Lei H C, Sun J P and Cheng J G 2021 Phys. Rev. Research 3 043018
[27] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[28] Isakov S V, Wessel S, Melko R G, Sengupta K and Kim Y B 2006 Phys. Rev. Lett. 97 147202
[29] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[30] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[31] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125
[32] Zhang J F, Liu K and Lu Z Y 2021 Phys. Rev. B 104 195130
[33] Tsirlin A A, Fertey P, Ortiz B R, Klis B, Merkl V, Dressel M, Wilson S D and Uykur E 2021 arXiv: 2105.01397 (Preprint)
[34] Lee S, Collini J, Sun S X L, Mitrano M, Guo X, Eckberg C, Paglione J, Fradkin E and Abbamonte P 2021 Phys. Rev. Lett. 127 027602
[35] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[1] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[2] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[3] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[4] Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology
Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰). Chin. Phys. B, 2018, 27(9): 097103.
[5] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[6] The response of temperature and hydrostatic pressure of zinc-blende GaxIn1-xAs semiconducting alloys
A. R. Degheidy, E. B. Elkenany. Chin. Phys. B, 2012, 21(12): 126101.
[7] Electromechanical-induced antiferroelectric–ferroelectric phase transition in PbLa(Zr,Sn,Ti)O3 ceramic
Zhang Chong-Hui(张崇辉), Xu Zhuo(徐卓), Gao Jun-Jie(高俊杰), Zhu Chang-Jun(朱长军), and Yao Xi(姚熹) . Chin. Phys. B, 2011, 20(9): 097702.
[8] Release of charges under external fields of PbLa(Zr,Sn,Ti)O3 ceramic
Zhang Chong-Hui(张崇辉), Xu Zhuo(徐卓), Gao Jun-Jie(高俊杰), and Yao Xi(姚熹). Chin. Phys. B, 2011, 20(2): 027701.
[9] Structural and electronic properties of carbon nanotubes under hydrostatic pressures
Zhang Ying(张影), Cao Jue-Xian(曹觉先), and Yang Wei(杨薇) . Chin. Phys. B, 2008, 17(5): 1881-1886.
No Suggested Reading articles found!