Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100304    DOI: 10.1088/1674-1056/ac11d7
GENERAL Prev   Next  

Fabrication and characterization of superconducting multiqubit device with niobium base layer

Feifan Su(宿非凡)1, Zhaohua Yang(杨钊华)1,2, Shoukuan Zhao(赵寿宽)1,2, Haisheng Yan(严海生)1,2, Ziting Wang(王子婷)1,2, Xiaohui Song(宋小会)1, Ye Tian(田野)1, and Shiping Zhao(赵士平)1,2,3,4,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Chinese Academy of Sciences Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Superconducting transmon qubits are the leading platform in solid-state quantum computing and quantum simulation applications. In this work, we develop a fabrication process for the transmon multiqubit device with a niobium base layer, shadow-evaporated Josephson junctions, and airbridges across the qubit control lines to suppress crosstalk. Our results show that these multiqubit devices have well-characterized readout resonators, and that the energy relaxation and Ramsey (spin-echo) dephasing times are up to ~ 40 μs and 14 (47) μs, respectively. We perform single-qubit gate operations that demonstrate a maximum gate fidelity of 99.97%. In addition, two-qubit vacuum Rabi oscillations are measured to evaluate the coupling strength between qubits, and the crosstalk among qubits is found to be less than 1% with the fabricated airbridges. Further improvements in qubit coherence performance using this fabrication process are also discussed.
Keywords:  superconducting quantum computing      transmon qubit      device fabrication      characterization  
Received:  25 February 2021      Revised:  02 July 2021      Accepted manuscript online:  07 July 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  85.25.Cp (Josephson devices)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0300601), the National Natural Science Foundation of China (Grant Nos. 11934018 and 11874063), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2018B030326001).
Corresponding Authors:  Shiping Zhao     E-mail:

Cite this article: 

Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平) Fabrication and characterization of superconducting multiqubit device with niobium base layer 2021 Chin. Phys. B 30 100304

[1] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L and Martinis J M 2019 Nature 574 505
[2] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[3] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[4] Wendin G and Shumeiko V S 2006 Handbook of Theoretical and Computational Nanotechnology (Rieth M and Schommers W, Ed.) (California: American Scientific Publishers)
[5] Clarke J and Wilhelm F K 2008 Nature 453 1031
[6] Makhlin Y, Schon G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[7] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[8] Cirac J I and Zoller P 2012 Nat. Phys. 8 264
[9] Blais A, Huang R, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[10] Koch J, Yu T, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[11] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401
[12] Josephine B C, Michael R V, Antonio D C, Martin S, Gao J, David W A, Jerry M C, Jay M G, Mary B R, George A K, Matthias S and David P P 2011 Appl. Phys. Lett. 103 012602
[13] Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim D K, Miloshi X, Rosenberg D, Sevi A, Yoder J L, Dauler E and Oliver W D 2018 Appl. Phys. Lett. 112 062601
[14] Liu Q, Xue G M, Tan X S, Yu H F and Yu Y 2017 Chin. Phys. B 26 058402
[15] Foxen B 2018 Quantum. Sci. Technol. 3 014005
[16] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, Tian Ye and Zhao S P 2019 Chin. Phys. B 28 110303
[17] Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Yu, Chiar B, Dunsworth A, Jeffrey E, Mutus J Y, Malley P J J, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Cleland A N and Martinis J M 2014 Appl. Phys. Lett. 104 052602
[18] Jin Z C, Wu H T, Yu H F and Yu Y 2018 Chin. Phys. B 27 100310
[19] Ponchak G E, Papapolymerou J and Tentzeris M M 2005 IEEE Trans. Microwave Theory Techniq. 53 713
[20] Liaw H J and Merkelo H 1997 IEEE Circ. Dev. Mag. 13 22
[21] Schuster C and Fichtner W 2001 IEEE Trans. Electromagn. Compat. 43 416
[22] Megrant A, Neill C, Barends R, Chiaro B, Chen Yu, Feigl L, Kelly J, Lucero E, Mariantoni M, Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrm C J, Martinis J M and Cleland A N 2012 Appl. Phys. Lett. 100 113510
[23] Su F F, Yang Z H, Tian Y and Zhao S P Chinese Invention Patent 2020110193710.0 [2021-04-15] (in Chinese)
[24] Airbridges are fabricated on sample Ⅲ, which does not show difference compared to samples I and Ⅱ in the coherence time measurements.
[25] Suri B 2015 Transmon qubits coupled to superconducting lumped element resonators (University of California, Santa Barbara)
[26] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Nat. Phys. 7 565
[27] Mao B 2010 Coherent Manipulation of Multi-Partite Quantum States in a Qubit-TLS System via Landau-Zener Transition (Ph.D Dissertation) (Lawrence: University of Kansas)
[28] Chow J M, Gambetta J M, Tornberg L, Koch J, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502
[29] Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504
[30] Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Science 313 1423
[31] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[32] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502
[33] Place P M, Rodgers V H, Mundada P, Smitham M, Fitzpatrick M, Leng Z Q, Premkumar A, Bryon J, Sussman S, Cheng G M, Madhavan T, Babla H K, Jack B, Gyenis A, Yao N, Cava R J and Houck A A 2020 arXiv:2003.03307v1 [quant-ph]
[34] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J and Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1
[35] Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero Erik, Neeley M, Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508
[36] Blok M S, Ramasesh V V, Schuster T, Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N and Siddiqi I 2020 arXiv:2003.03307v1 [quant-ph]
[37] Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf R J and Devoret M H 2012 Appl. Phys. Lett. 100 192601
[38] Sage J M, Bolkhovsky V, Oliver W D, Turek B and Welander P B 2011 J. Appl. Phys. 109 063915
[39] Bilmes A, Neumann A K, Volosheniuk S, Ustinov A V and Lisenfeld J 2021 arXiv:2101.01453v2 [quant-ph]
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[3] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[4] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[5] Detailed characterization of polycapillary focusing x-ray lenses by a charge-coupled device detector and a pinhole
Xue-Peng Sun(孙学鹏), Shang-Kun Shao(邵尚坤), Hui-Quan Li(李惠泉), Tian-Yu Yuan(袁天语), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(12): 120702.
[6] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[7] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[8] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[9] Advanced characterization and calculation methods for rechargeable battery materials in multiple scales
Xin-Yan Li(李欣岩), Su-Ting Weng(翁素婷), Lin Gu(谷林). Chin. Phys. B, 2020, 29(2): 028801.
[10] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[11] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[12] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[13] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[14] Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications
Fang-Yu Yue(越方禹), Su-Yu Ma(马骕驭), Jin Hong(洪进), Ping-Xiong Yang(杨平雄), Cheng-Bin Jing(敬承斌), Ye Chen(陈晔), Jun-Hao Chu(褚君浩). Chin. Phys. B, 2019, 28(1): 017104.
[15] Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(8): 084207.
No Suggested Reading articles found!