Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074204    DOI: 10.1088/1674-1056/ad3dd3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamically enhanced Autler-Townes splitting by orthogonal XUV fields

Li-Long Wu(吴立龙)1, Wei-Chao Jiang(姜维超)1,†, and Liang-You Peng(彭良友)2
1 Institute of Quantum Precision Measurement, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Abstract  Based on numerical solutions of the time-dependent Schrödinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump-probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels, inducing Rabi oscillations. The resulting dynamically enhanced Autler-Townes (AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.
Keywords:  Autler-Townes splitting      orthogonal XUV fields      photoelectron spectra      Rabi frequency  
Received:  23 February 2024      Revised:  27 March 2024      Accepted manuscript online:  12 April 2024
PACS:  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12074265, 12234002, and 92250303) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010329).
Corresponding Authors:  Wei-Chao Jiang     E-mail:  jiang.wei.chao@szu.edu.cn

Cite this article: 

Li-Long Wu(吴立龙), Wei-Chao Jiang(姜维超), and Liang-You Peng(彭良友) Dynamically enhanced Autler-Townes splitting by orthogonal XUV fields 2024 Chin. Phys. B 33 074204

[1] Rabi I I 1936 Phys. Rev. 49 324
[2] Knight P and Milonni P 1980 Phys. Rep. 66 21
[3] Mollow B R 1969 Phys. Rev. 188 1969
[4] Ruggenthaler M and Bauer D 2009 Phys. Rev. Lett. 102 233001
[5] Nasiri Avanaki K, Telnov D A and Chu S I 2016 Phys. Rev. A 94 053410
[6] Stooß V, Cavaletto S M, Donsa S, Blättermann A, Birk P, Keitel C H, Březinová I, Burgdörfer J, Ott C and Pfeifer T 2018 Phys. Rev. Lett. 121 173005
[7] Linskens A F, Holleman I, Dam N and Reuss J 1996 Phys. Rev. A 54 4854
[8] Reetz-Lamour M, Deiglmayr J, Amthor T and Weidemüller M 2008 New J. Phys. 10 045026
[9] Chen X and Yeazell J A 1998 Phys. Rev. Lett. 81 5772
[10] Huber B, Baluktsian T, Schlagmüller M, Kölle A, Kübler H, Löw R and Pfau T 2011 Phys. Rev. Lett. 107 243001
[11] Rezai M, Wrachtrup J and Gerhardt I 2019 New J. Phys. 21 045005
[12] Palacios A, Bachau H and Martín F 2006 Phys. Rev. A 74 031402
[13] Palacios A, Bachau H and Martín F 2007 Phys. Rev. A 75 013408
[14] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G and Lienau C 2013 Nat. Photon. 7 128
[15] Nakamura Y, Pashkin Y A and Tsai J S 2001 Phys. Rev. Lett. 87 246601
[16] Muller A, Flagg E B, Bianucci P, Wang X Y, Deppe D G, Ma W, Zhang J, Salamo G J, Xiao M and Shih C K 2007 Phys. Rev. Lett. 99 187402
[17] Fushitani M, Liu C N, Matsuda A, Endo T, Toida Y, Nagasono M, Togashi T, Yabashi M, Ishikawa T, Hikosaka Y, Morishita T and Hishikawa A 2016 Nat. Photon. 10 102
[18] Sako T, Adachi J, Yagishita A, Yabashi M, Tanaka T, Nagasono M and Ishikawa T 2011 Phys. Rev. A 84 053419
[19] Wittmann T, Horvath B, Helml W, Schaetzel M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nat. Phys. 5 357
[20] Gauthier D, Ribič P R, De Ninno G, Allaria E, Cinquegrana P, Danailov M B, Demidovich A, Ferrari E, Giannessi L, Mahieu B and Penco G 2015 Phys. Rev. Lett. 115 114801
[21] Kanter E P, Krässig B, Li Y, March A M, Ho P, Rohringer N, Santra R, Southworth S H, DiMauro L F, Doumy G, Roedig C A, Berrah N, Fang L, Hoener M, Bucksbaum P H, Ghimire S, Reis D A, Bozek J D, Bostedt C, Messerschmidt M and Young L 2011 Phys. Rev. Lett. 107 233001
[22] Zhang Y, Yan T M and Jiang Y H 2018 Phys. Rev. Lett. 121 113201
[23] Windpassinger P J, Oblak D, Petrov P G, Kubasik M, Saffman M, Alzar C L G, Appel J, Müller J H, Kjærgaard N and Polzik E S 2008 Phys. Rev. Lett. 100 103601
[24] Chaudhury S, Smith G A, Schulz K and Jessen P S 2006 Phys. Rev. Lett. 96 043001
[25] Flögel M, Durá J, Schütte B, Ivanov M, Rouzée A and Vrakking M J J 2017 Phys. Rev. A 95 021401
[26] Chen X, Cao W, Li Z, Yang Z, Zhang Q and Lu P 2020 Phys. Rev. A 102 053119
[27] Shirley J H 1965 Phys. Rev. 138 B979
[28] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[29] Lechner R, Maier C, Hempel C, Jurcevic P, Lanyon B P, Monz T, Brownnutt M, Blatt R and Roos C F 2016 Phys. Rev. A 93 053401
[30] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[31] Ranitovic P, Tong X M, Hogle C W, Zhou X, Liu Y, Toshima N, Murnane M M and Kapteyn H C 2011 Phys. Rev. Lett. 106 193008
[32] Adler A, Rachman A and Robinson E J 1995 J. Phys. B: At. Mol. Opt. Phys. 28 5057
[33] Rodríguez V 2006 Nucl. Instrum. Methods B 247 105
[34] Pabst S, Wang D and Santra R 2015 Phys. Rev. A 92 053424
[35] Tumakov D A, Telnov D A, Plunien G and Shabaev V M 2019 Phys. Rev. A 100 023407
[36] Saglamyurek E, Hrushevskyi T, Rastogi A, et al. 2018 Nat. Photon. 12 774
[37] Kim J, Lim J S, Noh H R and Kim S K 2020 J. Phys. Chem. Lett. 11 6791
[38] Knight P L 1978 J. Phys. B: At. Mol. Opt. Phys. 11 L511
[39] Girju M G, Hristov K, Kidun O and Bauer D 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4165
[40] Bustamante M G, Rodríguez V D and Barrachina R O 2012 J. Phys. Conf. Ser. 397 012014
[41] Liao Q, Zhou Y, Huang C and Lu P 2012 New J. Phys. 14 013001
[42] Chen Y, Zhou Y, Li Y, Li M, Lan P and Lu P 2018 Phys. Rev. A 97 013428
[43] Walker B, Kaluža M, Sheehy B, Agostini P and DiMauro L F 1995 Phys. Rev. Lett. 75 633
[44] Grobe R and Eberly J H 1993 Phys. Rev. A 48 623
[45] Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Fraia MD, Eng-Johnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince K C, Squibb Squibb R J, Zhong S, Demekhin P V, Meyer M, Miron C, Badano L, Danailov M B, Giannessi L, Manfredda M, Sottocorona F, Zangrando M and Dahlström J M 2022 Nature 608 488
[46] Zhang X, Zhou Y, Liao Y, Chen Y, Liang J, Ke Q, Li M, Csehi A and Lu P 2022 Phys. Rev. A 106 063114
[47] Bunjac A, Popović D B and Simonović N S 2022 Eur. Phys. J. D 76 249
[48] Tóth A and Csehi A 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035005
[49] Toth A, Borbély S, Zhou Y and Csehi A 2023 Phys. Rev. A 107 053101
[50] Bayer T, Eickhoff K, Köhnke D and Wollenhaupt M 2023 Phys. Rev. A 108 033111
[51] Jiang W C, Liang H, Wang S, Peng L Y and Burgdörfer J 2021 Phys. Rev. Res. 3 L032052
[52] Agueny H 2020 Sci. Rep. 10 21869
[53] Richter M, Kunitski M, Schöffler M, Jahnke T, Schmidt L P, Li M, Liu Y and Dörner R 2015 Phys. Rev. Lett. 114 143001
[54] Xie X, Wang T, Yu S, Lai X, Roither S, Kartashov D, Baltuška A, Liu X, Staudte A and Kitzler M 2017 Phys. Rev. Lett. 119 243201
[55] Geng J W, Xiong WH, Xiao X R, Peng L Y and Gong Q 2015 Phys. Rev. Lett. 115 193001
[56] Richter M, Kunitski M, Schöffler M, Jahnke T, Schmidt L P H and Dvorner R 2016 Phys. Rev. A 94 033416
[57] Zhou Y, Huang C, Tong A, Liao Q and Lu P 2011 Opt. Express 19 2301
[58] Zhang L, Xie X, Roither S, Kartashov D, Wang Y, Wang C, Schöffler M, Shafir D, Corkum P B, Baltuška A, Ivanov I, Kheifets A, Liu X, Staudte A and Kitzler M 2014 Phys. Rev. A 90 061401
[59] Kukulin V and Pomerantsev V 1978 Ann. Phys. 111 330
[60] Rescigno T N and McCurdy C W 2000 Phys. Rev. A 62 032706
[61] Schneider B I and Collins L A 2005 J. Non-Cryst. Solids 351 1551
[62] Rayson M J 2007 Phys. Rev. E 76 026704
[63] Jiang W C and Tian X Q 2017 Opt. Express 25 26832
[64] Wang S, Jiang WC, Tian X Q and Sun H B 2020 Phys. Rev. A 101 053417
[65] Braun M, Sofianos S, Papageorgiou D and Lagaris I 1996 J. Comput. Phys. 126 315
[66] Joachain C J, Kylstra N J and Potvliege R M 2011 Atoms in Intense Laser Fields (Cambridge: Cambridge University Press)
[1] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[2] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[3] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[4] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[5] Autler-Townes spectroscopy of high-lying state by phase conjugate six-wave mixing
Jin-Hai Bai(白金海), Jian-Jun Li(李建军), Ling-An Wu(吴令安), Pan-Ming Fu(傅盘铭), Ru-Quan Wang(王如泉), Zhan-Chun Zuo(左战春). Chin. Phys. B, 2017, 26(4): 044204.
[6] Crossover between electromagnetically induced transparency and Autler-Townes splitting with dispersion
Lu Xiao-Gang (芦小刚), Miao Xing-Xu (缪兴绪), Bai Jin-Hai (白金海), Yuan Yuan (袁园), Wu Ling-An (吴令安), Fu Pan-Ming (傅盘铭), Wang Ru-Quan (王如泉), Zuo Zhan-Chun (左战春). Chin. Phys. B, 2015, 24(9): 094204.
[7] Relationship between electromagnetically-induced transparency and Autler–Townes splitting in a Doppler-broadened system
Pei Li-Ya (裴丽娅), Niu Jin-Yan (牛金艳), Wang Ru-Quan (王如泉), Qu Yi-Zhi (屈一至), Zuo Zhan-Chun (左战春), Wu Ling-An (吴令安), Fu Pan-Ming (傅盘铭). Chin. Phys. B, 2015, 24(7): 074203.
[8] Effect of pump-1 laser on Autler–Townes splitting in photoelectron spectrum of K2 molecule
Guo Wei (郭玮), Lu Xing-Qiang (路兴强), Wang Xin-Lin (王新林), Yao Hong-Bin (姚洪斌). Chin. Phys. B, 2015, 24(1): 013302.
[9] The difference in noise property between the Autler–Townes splitting medium and the electromagnetically induced transparent medium
Li Zhong-Hua(李中华), Li Yuan(李媛), Dou Ya-Fang(豆亚芳), and Zhang Jun-Xiang(张俊香) . Chin. Phys. B, 2012, 21(3): 034204.
[10] Autler–Townes splitting in photoelectron spectra of K2 molecule
Yao Hong-Bin(姚洪斌) and Zheng Yu-Jun(郑雨军) . Chin. Phys. B, 2012, 21(2): 023302.
[11] Energy band alignment of PbTe/CdTe(111) interface determined by ultraviolet photoelectron spectra using synchrotron radiation
Cai Chun-Feng(蔡春锋), Wu Hui-Zhen(吴惠桢), Si Jian-Xiao(斯剑霄), Jin Shu-Qiang(金树强), Zhang Wen-Hua(张文华), Xu Yang(许杨), and Zhu Jun-Fa(朱骏发). Chin. Phys. B, 2010, 19(7): 077301.
[12] Study on wave packet dynamics of E1g+ state of Li2 with femtosecond-resolved photoelectron spectra
Liu Yu-Fang(刘玉芳), Liu Rui-Qiong(刘瑞琼), and Ding Jun-Xia(丁俊霞). Chin. Phys. B, 2010, 19(3): 033301.
[13] Autler–Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms
Liang Qiang-Bing(梁强兵), Yang Bao-Dong(杨保东), Yang Jian-Feng(杨建峰), Zhang Tian-Cai(张天才), and Wang Jun-Min(王军民). Chin. Phys. B, 2010, 19(11): 113207.
[14] Time-dependent theoretical approach to the influence of laser fields on the resonance enhanced multi-photon ionization of SH radical
Yue Da-Guang(岳大光), Zheng Xiao-Yun(郑晓云), Liu Hao(刘浩), Wang Chun-Xing(王春兴), and Meng Qing-Tian(孟庆田). Chin. Phys. B, 2009, 18(4): 1479-1485.
[15] Scheme for teleportation of unknown states of trapped ion
Chen Mei-Feng(陈美锋) and Ma Song-She(马宋设). Chin. Phys. B, 2008, 17(2): 451-455.
No Suggested Reading articles found!