Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074202    DOI: 10.1088/1674-1056/ad4631
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-visibility ghost imaging with phase-controlled discrete classical light sources

Xueying Wu(仵雪滢), Yue Zhao(赵岳), and Liming Li(李利明)†
School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China
Abstract  We take phase modulation to create discrete phase-controlled sources and realize the super-bunching effect by a phase-correlated method. From theoretical and numerical simulations, we find the space translation invariance of the bunching effect is a key point for the ghost imaging realization. Experimentally, we create the orderly phase-correlated discrete sources which can realize high-visibility second-order ghost imaging than the result with chaotic sources. Moreover, some factors affecting the visibility of ghost image are discussed in detail.
Keywords:  ghost imaging      high visibility      space translation invariance  
Received:  12 March 2024      Revised:  27 April 2024      Accepted manuscript online:  02 May 2024
PACS:  42.30.-d (Imaging and optical processing)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62105188).
Corresponding Authors:  Liming Li     E-mail:  liliming@sdut.edu.cn

Cite this article: 

Xueying Wu(仵雪滢), Yue Zhao(赵岳), and Liming Li(李利明) High-visibility ghost imaging with phase-controlled discrete classical light sources 2024 Chin. Phys. B 33 074202

[1] Moreau P A, Toninelli E, Gregory T and Padgett M J 2018 Laser & Photon. Rev. 12 1700143
[2] Padgett M J and Boyd R W 2017 Philos. Trans. R. Soc. A 375 20160233
[3] Wang C, Zhang D, Bai Y and Chen B 2010 Phys. Rev. A 82 063814
[4] Meyers R, Deacon K S and Shih Y 2008 Phys. Rev. A 77 041801
[5] Goodman J 1995 Introduction to Fourier Optics (Roberts and Company Publishers)
[6] Shapiro J H 2008 Phys. Rev. A 78 061802
[7] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[8] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[9] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429(R)
[10] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[11] Bennink R S, Bentley S J, Boyd R W and Howell J C 2004 Phys. Rev. Lett. 92 033601
[12] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. A 70 013802
[13] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[14] Valencia A, Scarcelli G, D’Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601
[15] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[16] Brown R H and Twiss R Q 1956 Nature 177 27
[17] Brown R H and Twiss R Q 1956 Nature 178 1046
[18] Li L, Hong P and Zhang G 2019 Phys. Rev. A 99 023848
[19] Basano L and Ottonello P 2007 Am. J. Phys. 75 343
[20] Li L, Wang B, Li S, Yuan H and Xing F 2021 Phys. Lett. A 420 127749
[21] Basano L and Ottonello P 2007 Appl. Opt. 46 6291
[22] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[23] Chen H, Peng T and Shih Y 2013 Phys. Rev. A 88 023808
[24] Chen X H, Yan L, Wu W, Meng S Y, Wu L A, Sun Z B, Wang C and Zhai G J 2017 Chin. Phys. B 26 060702
[25] Li Y and Duan D 2023 Chin. Phys. B 32 104203
[26] Liu X F, Li M F, Yao X R, Yu W K, Zhai G J and Wu L A 2013 AIP Advances 3 052121
[27] Luo C and Cheng J 2013 Opt. Lett. 38 5381
[28] Liu R, Fang A, Zhou Y, Zhang P, Gao S, Li H, Gao H and Li F 2016 Phys. Rev. A 93 013822
[29] Si Y, Kong L J, Li Y N, Tu C H and Wang H T 2016 Chin. Phys. Lett. 33 034203
[30] Liu Z Q, Bai Y F, Zou X P F, Zhou L Y, Fu Q and Fu X Q 2023 Chin. Phys. B 32 034210
[31] Bai Y and Han S 2007 Phys. Rev. A 76 043828
[32] Agafonov I N, Chekhova M V, Iskhakov T S and Penin A N 2008 Phys. Rev. A 77 053801
[33] Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L and Wang K 2008 Appl. Phys. Lett. 92 201102
[34] Chan K W C, O’Sullivan M N and Boyd R W 2009 Opt. Lett. 34 3343
[35] Liu Q, Chen X H, Luo K H, Wu W and Wu L A 2009 Phys. Rev. A 79 053844
[36] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[37] Zhou Y, Simon J, Liu J and Shih Y 2010 Phys. Rev. A 81 043831
[38] Chen X H, Chen W, Meng S Y, Wu W, Wu L A and Zhai G J 2013 J. Opt. Soc. Am. A 30 1422
[39] Ou L H and Kuang L M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1833
[40] Agafonov I N, Chekhova M V, Iskhakov T S and Wu L A 2008 J. Mod. Opt. 56 422
[41] Liu J and Shih Y 2009 Phys. Rev. A 79 023819
[42] Li H G, Zhang Y T, Cao D Z, Xiong J and Wang K G 2008 Chin. Phys. B 17 4510
[43] Hong P and Zhang G 2017 Opt. Express 25 22789
[44] Wang C, Lan R J, Ren C and Cao D Z 2020 Phys. Rev. A 101 033819
[45] Hong P, Liu J and Zhang G 2012 Phys. Rev. A 86 013807
[46] Bromberg Y and Cao H 2014 Phys. Rev. Lett. 112 213904
[47] Zhou Y, Li F, Bai B, Chen H, Liu J, Xu Z and Zheng H 2017 Phys. Rev. A 95 053809
[48] Bai B, Liu J, Zhou Y, Zheng H, Chen H, Zhang S, He Y, Li F and Xu Z 2017 J. Opt. Soc. Am. B 34 2081
[49] Bender N, Yilmaz H, Bromberg Y and Cao H 2018 Optica 5 595
[50] Zhang L, Lu Y, Zhou D, Zhang H, Li L and Zhang G 2019 Phys. Rev. A 99 063827
[51] Mandel L 1983 Phys. Rev. A 28 929
[52] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press)
[53] Shih Y 2011 An Introduction to Quantum Optics: Photon and Biphoton Physics (CRC Press)
[54] Fano U 1961 Am. J. Phys. 29 539
[55] Liu J and Zhang G 2010 Phys. Rev. A 82 013822
[56] Hong P and Zhang G 2013 Phys. Rev. A 88 043838
[57] Hong P, Xu L, Zhai Z and Zhang G 2013 Opt. Express 21 14056
[58] Greenberger D M, Horne M A and Zeilinger A 1993 Phys. Today 46 22
[59] Liu J and Zhang G 2011 Opt. Commun 284 2658
[1] Intensity correlation properties of x-ray beams split with Laue diffraction
Chang-Zhe Zhao(赵昌哲), Shang-Yu Si(司尚禹), Hai-Peng Zhang(张海鹏), Lian Xue(薛莲), Zhong-Liang Li(李中亮), and Ti-Qiao Xiao(肖体乔). Chin. Phys. B, 2024, 33(1): 014102.
[2] Optical encryption scheme based on spread spectrum ghost imaging
Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(7): 074202.
[3] Principle of subtraction ghost imaging in scattering medium
Qin Fu(付芹), Yanfeng Bai(白艳锋), Wei Tan(谭威), Xianwei Huang(黄贤伟), Suqin Nan(南苏琴), and Xiquan Fu(傅喜泉). Chin. Phys. B, 2023, 32(6): 064203.
[4] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[5] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[6] Defogging computational ghost imaging via eliminating photon number fluctuation and a cycle generative adversarial network
Yuge Li(李玉格) and Deyang Duan(段德洋). Chin. Phys. B, 2023, 32(10): 104203.
[7] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[8] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[9] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[10] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[11] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[12] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[13] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[14] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[15] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
No Suggested Reading articles found!