|
|
Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations |
Jian Yuan(袁健)1, Xian-Biao Shi(石贤彪)2,†, Hong Du(杜红)3, Tian Li(李田)4, Chuan-Ying Xi(郗传英)5, Xia Wang(王霞)1, Wei Xia(夏威)1,6,‡, Bao-Tian Wang(王保田)2, Rui-Dan Zhong(钟瑞丹)3,§, and Yan-Feng Guo(郭艳峰)1,6 |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; 5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China; 6 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China |
|
|
Abstract The REAgSb$_{2}$ ($RE = {\rm rare}$ earth and Y) family has drawn considerable research interest because the two-dimensional Sb net in their crystal structures hosts topological fermions and hence rich topological properties. We report herein the magnetization and magnetotransport measurements of SmAgSb$_{2}$ single crystal, which unveil very large magnetoresistance and high carrier mobility up to $6.2\times 10^{3}%$ and $5.58\times 10^{3}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, respectively. The analysis of both Shubnikov-de Haas and de Haas-van Alphen quantum oscillations indicates nontrivial Berry phases in the paramagnetic state while trivial Berry curvature in the antiferromagnetic state, indicating a topological phase transition induced by the antiferromagnetic order. It is also supported by the first-principles calculations. The results not only provide a new interesting topological material but also offer valuable insights into the correlation between magnetism and nontrivial topological states.
|
Received: 08 May 2024
Revised: 13 May 2024
Accepted manuscript online: 15 May 2024
|
PACS:
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004405, 12334008, and 12374148), the Double First-Class Initiative Fund of ShanghaiTech University, and the Analytical Instrumentation Center of ShanghaiTech University (Grant No. SPST-AIC10112914). W. Xia acknowledges the research fund from the Shanghai Sailing Program (Grant No. 23YF1426900). R. D. Zhong acknowledges the fund from the National Key R&D Program of China (Grant Nos. 2022YFA1402702 and 2021YFA1401600). |
Corresponding Authors:
Xian-Biao Shi, Wei Xia, Rui-Dan Zhong
E-mail: shixb@ihep.ac.cn;xiawei2@shanghaitech.edu.cn;rzhong@sjtu.edu.cn
|
Cite this article:
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰) Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations 2024 Chin. Phys. B 33 077102
|
[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [3] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [4] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [5] Novoselov K S, Jiang Z, Zhang Y, Morozov S, Stormer H, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379 [6] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 [7] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413 [8] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2014 Phys. Rev. X 5 031013 [9] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023 [10] Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H. Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735 [11] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [12] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970 [13] Zhang W, Yu R, Zhang H J, Dai X and Fang Z 2010 New J. Phys. 12 065013 [14] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101 [15] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659 [16] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 aaw5685 [17] Zhang D Q, Shi M J, Zhu T S, Xing D Y, Zhang H J and Wang J 2019 Phys. Rev. Lett. 122 206401 [18] Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z Y, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y F, Hashimoto M, Lu D H, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P C 2022 Nature 609 490 [19] Farhan M A, Lee G and Shim J H 2014 J. Phys.: Condens. Matter 26 042201 [20] Sakai H, Fujimura H, Sakuragi S, Ochi M, Kurihara R, Miyake A, Tokunaga M, Kojima T, Hashizume D, Muro T, Kuroda K, Kondo K, Kida T, Hagiwara M, Kuroki K, Kondo M, Tsuruda K, Murakawa H and Hanasaki N 2020 Phys. Rev. B 101 081104 [21] Liu B, Yu F, Cheng J B, Zhu W L, He J B, Liu C B, Li L and Luo Y S 2022 J. Supercond. Nov. Magn. 35 3263 [22] You J S, Lee I, Choi E S, Jo Y J, Shim J H and Kim J S 2019 Current Applied Physics 19 230 [23] Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim J H, Shim J H and Kim J S 2011 Phys. Rev. Lett. 107 126402 [24] Zhang A M, Liu C L, Yi C J, Zhao G H, Xia T L, Ji J T, Shi Y G, Yu R, Wang X Q, Chen G F and Zhang Q M 2016 Nat. Commun. 7 13833 [25] Li L J, Wang K F, Graf D, Wang L M, Wang A F and Petrovic C 2016 Phys. Rev. B 93 115141 [26] Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, NaKao H, Murakami Y, Arima T H, Tokura Y and Ishiwata S 2016 Sci. Adv. 2 1501117 [27] Sun Z L, Wang A F, Mu H M, Wang H H, Wang Z F, Wu T, Wang Z Y, Zhou X Y and Chen X H 2021 npj Quantum Mater. 6 94 [28] Wang K F, Graf D, Wang L M, Lei H C, Tozer S W and Petrovic C 2012 Phys. Rev. B 85 041101 [29] Soh J R, Manuel P, Schröter N M B, Yi C J, Shi Y G, Prabhakaran D and Boothroyd A T 2019 Phys. Rev. B 100 174406 [30] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, Brink J V D, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J 2019 Nat. Commun. 10 3424 [31] Pan Y, Le C, He B, Watzman S J, Yao M Y, Gooth J, Heremans J P, Sun Y and Felser C 2022 Nat. Mater. 21 203 [32] Shiomi Y, Watanabe H, Masuda H, Takahashi H, Yanase Y and Ishiwata S 2019 Phys. Rev. Lett. 122 127207 [33] Shi X, Richard P, Wan K F, Liu M, Matt C E, Xu N, Dhaka R S, Ristic Z, Qian T, Yang Y F, Petrovic C, Shi M and Ding H 2016 Phys. Rev. B 93 081105 [34] Sawani D, Khadiza A, Rahul V, Bahadur S, Saroj P D, Thamizhavel A and Maiti K 2023 arXiv:2311.05278 [cond-mat.str-el] [35] Blöchl P E 1994 Phys. Rev. B 50 17953 [36] Lehtomaki J, Makkonen I, Caro M A, Harju A and Lopez-Acevedo O 2014 J. Chem. Phys. 141 234102 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [39] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [42] Vladimir I A, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767 [43] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 [44] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [45] Prozorov R, Vannette M D, Samolyuk G D, Law S A, Bud’ko S L and Canfield P C 2007 Phys. Rev. B 75 014413 [46] Myers M D, Bud’ko S L, Antropov V P, Harmon B N, Canfield P C and Lacerda A H 1999 Phys. Rev. B 60 13371 [47] Myers M D, Bud’ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27 [48] Rourke P M C, Bangura A F, Proust C, Levallois J, Leyraud N D, LeBoeuf D, Taillefer L, Adachi S, Sutherland M L and Hussey N E 2010 Phys. Rev. B 82 020514 [49] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y and Tokura Y 2013 Nat. Mater. 12 512 [50] Li C Z, Li J G, Wang L X, Zhang L, Zhang J M, Yu D P and Liao Z M 2016 ACS Nano 10 6020 [51] Luk’yanchuk I A and Kopelevich Y 2006 Phys. Rev. Lett. 97 256801 [52] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402 [53] Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|